7.11-DP:完全背包问题

本文最后更新于 2024年10月21日 早上

动态规划:完全背包理论基础

本题力扣上没有原题,大家可以去卡码网第52题 (opens new window)去练习,题意是一样的。

完全背包问题

题意描述:

[!NOTE]

有 𝑁 种物品和一个容量是 𝑉 的背包,每种物品都有无限件可用。

第 𝑖 种物品的体积是 𝑣𝑖,价值是 𝑤𝑖。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,𝑁,𝑉,用空格隔开,分别表示物品种数和背包容积。

接下来有 𝑁 行,每行两个整数𝑣𝑖,𝑤𝑖,用空格隔开,分别表示第 𝑖 种物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<𝑁,𝑉≤1000
0<𝑣𝑖,𝑤𝑖≤1000

输入样例

1
2
3
4
5
4 5
1 2
2 4
3 4
4 5

输出样例:

1
10

思路

[!TIP]

有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。

完全背包和01背包问题唯一不同的地方就是,每种物品有无限件

同样leetcode上没有纯完全背包问题,都是需要完全背包的各种应用,需要转化成完全背包问题,所以我这里还是以纯完全背包问题进行讲解理论和原理。

在下面的讲解中,我依然举这个例子:

背包最大重量为4。

物品为:

重量价值
物品0115
物品1320
物品2430

每件商品都有无限个!

问背包能背的物品最大价值是多少?

01背包和完全背包唯一不同就是体现在遍历顺序上,所以本文就不去做动规五部曲了,我们直接针对遍历顺序经行分析!

首先再回顾一下01背包的核心代码

1
2
3
4
5
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}

我们知道01背包内嵌的循环是从大到小遍历,为了保证每个物品仅被添加一次。

而完全背包的物品是可以添加多次的,所以要从小到大去遍历,即:

1
2
3
4
5
6
7
// 先遍历物品,再遍历背包
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = weight[i]; j <= bagWeight ; j++) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

}
}

dp状态图如下:

动态规划-完全背包

相信很多同学看网上的文章,关于完全背包介绍基本就到为止了。

其实还有一个很重要的问题,为什么遍历物品在外层循环,遍历背包容量在内层循环?

这个问题很多题解关于这里都是轻描淡写就略过了,大家都默认 遍历物品在外层,遍历背包容量在内层,好像本应该如此一样,那么为什么呢?难道就不能遍历背包容量在外层,遍历物品在内层?

看过这两篇的话:

就知道了,01背包中二维dp数组的两个for遍历的先后循序是可以颠倒了,一维dp数组的两个for循环先后循序一定是先遍历物品,再遍历背包容量。

在完全背包中,对于一维dp数组来说,其实两个for循环嵌套顺序是无所谓的!

因为dp[j] 是根据下标j之前所对应的dp[j]计算出来的。 只要保证下标j之前的dp[j]都是经过计算的就可以了。

遍历物品在外层循环,遍历背包容量在内层循环,状态如图:

动态规划-完全背包1

遍历背包容量在外层循环,遍历物品在内层循环,状态如图:

动态规划-完全背包2

看了这两个图,大家就会理解,完全背包中,两个for循环的先后循序,都不影响计算dp[j]所需要的值(这个值就是下标j之前所对应的dp[j])。

先遍历背包在遍历物品,代码如下:

1
2
3
4
5
6
7
// 先遍历背包,再遍历物品
for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量
for(int i = 0; i < weight.size(); i++) { // 遍历物品
if (j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
cout << endl;
}

完整的C++测试代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
// 先遍历物品,在遍历背包
void test_CompletePack() {
vector<int> weight = {1, 3, 4};
vector<int> value = {15, 20, 30};
int bagWeight = 4;
vector<int> dp(bagWeight + 1, 0);
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = weight[i]; j <= bagWeight; j++) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
cout << dp[bagWeight] << endl;
}
int main() {
test_CompletePack();
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
// 先遍历背包,再遍历物品
void test_CompletePack() {
vector<int> weight = {1, 3, 4};
vector<int> value = {15, 20, 30};
int bagWeight = 4;

vector<int> dp(bagWeight + 1, 0);

for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量
for(int i = 0; i < weight.size(); i++) { // 遍历物品
if (j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
cout << dp[bagWeight] << endl;
}
int main() {
test_CompletePack();
}

本题力扣上没有原题,大家可以去卡码网第52题 (opens new window)去练习,题意是一样的,C++代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
#include <iostream>
#include <vector>
using namespace std;

// 先遍历背包,再遍历物品
void test_CompletePack(vector<int> weight, vector<int> value, int bagWeight) {

vector<int> dp(bagWeight + 1, 0);

for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量
for(int i = 0; i < weight.size(); i++) { // 遍历物品
if (j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
cout << dp[bagWeight] << endl;
}
int main() {
int N, V;
cin >> N >> V;
vector<int> weight;
vector<int> value;
for (int i = 0; i < N; i++) {
int w;
int v;
cin >> w >> v;
weight.push_back(w);
value.push_back(v);
}
test_CompletePack(weight, value, V);
return 0;
}

总结

细心的同学可能发现,全文我说的都是对于纯完全背包问题,其for循环的先后循环是可以颠倒的!

但如果题目稍稍有点变化,就会体现在遍历顺序上。

如果问装满背包有几种方式的话? 那么两个for循环的先后顺序就有很大区别了,而leetcode上的题目都是这种稍有变化的类型。

这个区别,我将在后面讲解具体leetcode题目中给大家介绍,因为这块如果不结合具题目,单纯的介绍原理估计很多同学会越看越懵!

别急,下一篇就是了!

最后,又可以出一道面试题了,就是纯完全背包,要求先用二维dp数组实现,然后再用一维dp数组实现,最后再问,两个for循环的先后是否可以颠倒?为什么? 这个简单的完全背包问题,估计就可以难住不少候选人了。


518.零钱兑换II

题意描述:

[!WARNING]

给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。

请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0

假设每一种面额的硬币有无限个。

题目数据保证结果符合 32 位带符号整数。

示例 1:

1
2
3
4
5
6
7
输入:amount = 5, coins = [1, 2, 5]
输出:4
解释:有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1

示例 2:

1
2
3
输入:amount = 3, coins = [2]
输出:0
解释:只用面额 2 的硬币不能凑成总金额 3

示例 3:

1
2
输入:amount = 10, coins = [10] 
输出:1

提示:

  • 1 <= coins.length <= 300
  • 1 <= coins[i] <= 5000
  • coins 中的所有值 互不相同
  • 0 <= amount <= 5000

思路:

[!TIP]

这是一道典型的背包问题,一看到钱币数量不限,就知道这是一个完全背包。

但本题和纯完全背包不一样,纯完全背包是凑成背包最大价值是多少,而本题是要求凑成总金额的物品组合个数!

注意题目描述中是凑成总金额的硬币组合数,为什么强调是组合数呢?

例如示例一:

5 = 2 + 2 + 1

5 = 2 + 1 + 2

这是一种组合,都是 2 2 1。

如果问的是排列数,那么上面就是两种排列了。

组合不强调元素之间的顺序,排列强调元素之间的顺序。 其实这一点我们在讲解回溯算法专题的时候就讲过了哈。

那我为什么要介绍这些呢,因为这和下文讲解遍历顺序息息相关!

回归本题,动规五步曲来分析如下:

  1. 确定dp数组以及下标的含义

dp[j]:凑成总金额j的货币组合数为dp[j]

  1. 确定递推公式

dp[j] 就是所有的dp[j - coins[i]](考虑coins[i]的情况)相加。

所以递推公式:dp[j] += dp[j - coins[i]];

这个递推公式大家应该不陌生了,我在讲解01背包题目的时候在这篇494. 目标和 (opens new window)中就讲解了,求装满背包有几种方法,公式都是:dp[j] += dp[j - nums[i]];

  1. dp数组如何初始化

首先dp[0]一定要为1dp[0] = 1是 递归公式的基础。如果dp[0] = 0的话,后面所有推导出来的值都是0了。

那么 dp[0] = 1有没有含义,其实既可以说 凑成总金额0的货币组合数为1,也可以说 凑成总金额0的货币组合数为0,好像都没有毛病。

但题目描述中,也没明确说 amount = 0 的情况,结果应该是多少。

这里我认为题目描述还是要说明一下,因为后台测试数据是默认,amount = 0 的情况,组合数为1的。

下标非0的dp[j]初始化为0,这样累计加dp[j - coins[i]]的时候才不会影响真正的dp[j]

dp[0]=1还说明了一种情况:如果正好选了coins[i]后,也就是j-coins[i] == 0的情况表示这个硬币刚好能选,此时dp[0]为1表示只选coins[i]存在这样的一种选法。

  1. 确定遍历顺序

本题中我们是外层for循环遍历物品(钱币),内层for遍历背包容量(金钱总额),还是外层for遍历背包(金钱总额),内层for循环遍历物品(钱币)呢?

我在动态规划:关于完全背包,你该了解这些! (opens new window)中讲解了完全背包的两个for循环的先后顺序都是可以的。但本题就不行了!

因为纯完全背包求得装满背包的最大价值是多少,和凑成总和的元素有没有顺序没关系,即:有顺序也行,没有顺序也行!

而本题要求凑成总和的组合数,元素之间明确要求没有顺序。

所以纯完全背包是能凑成总和就行,不用管怎么凑的。

本题是求凑出来的方案个数,且每个方案个数是为组合数。

那么本题,两个for循环的先后顺序可就有说法了。

我们先来看 外层for循环遍历物品(钱币),内层for遍历背包(金钱总额)的情况。

代码如下:

1
2
3
4
5
for (int i = 0; i < coins.size(); i++) { // 遍历物品
for (int j = coins[i]; j <= amount; j++) { // 遍历背包容量
dp[j] += dp[j - coins[i]];
}
}

假设:coins[0] = 1,coins[1] = 5。那么就是先把1加入计算,然后再把5加入计算,得到的方法数量只有{1, 5}这种情况。而不会出现{5, 1}的情况。

所以这种遍历顺序中dp[j]里计算的是组合数!

如果把两个for交换顺序,代码如下:

1
2
3
4
5
for (int j = 0; j <= amount; j++) { // 遍历背包容量
for (int i = 0; i < coins.size(); i++) { // 遍历物品
if (j - coins[i] >= 0) dp[j] += dp[j - coins[i]];
}
}

背包容量的每一个值,都是经过 1 和 5 的计算,包含了{1, 5} 和 {5, 1}两种情况。

此时dp[j]里算出来的就是排列数!

可能这里很多同学还不是很理解,建议动手把这两种方案的dp数组数值变化打印出来,对比看一看!(实践出真知)

  1. 举例推导dp数组

输入: amount = 5, coins = [1, 2, 5] ,dp状态图如下:

518.零钱兑换II

最后红色框dp[amount]为最终结果。

以上分析完毕,C++代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
class Solution {
public:
int change(int amount, vector<int>& coins) {
vector<int> dp(amount + 1, 0);
dp[0] = 1;
for (int i = 0; i < coins.size(); i++) { // 遍历物品
for (int j = coins[i]; j <= amount; j++) { // 遍历背包
dp[j] += dp[j - coins[i]];
}
}
return dp[amount];
}
};
  • 时间复杂度: O(mn),其中 m 是amount,n 是 coins 的长度
  • 空间复杂度: O(m)

是不是发现代码如此精简

总结

本题的递推公式,其实我们在494. 目标和 (opens new window)中就已经讲过了,而难点在于遍历顺序!

在求装满背包有几种方案的时候,认清遍历顺序是非常关键的。

如果求组合数就是外层for循环遍历物品,内层for遍历背包。

如果求排列数就是外层for遍历背包,内层for循环遍历物品。

可能说到排列数录友们已经有点懵了,后面Carl还会安排求排列数的题目,到时候在对比一下,大家就会发现神奇所在!


377. 组合总和 Ⅳ

题意描述:

[!WARNING]

给你一个由 不同 整数组成的数组 nums ,和一个目标整数 target 。请你从 nums 中找出并返回总和为 target 的元素组合的个数。题目数据保证答案符合 32 位整数范围。

示例 1:

1
2
3
4
5
6
7
8
9
10
11
12
输入:nums = [1,2,3], target = 4
输出:7
解释:
所有可能的组合为:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)
请注意,顺序不同的序列被视作不同的组合。

示例 2:

1
2
输入:nums = [9], target = 3
输出:0

提示:

  • 1 <= nums.length <= 200
  • 1 <= nums[i] <= 1000
  • nums 中的所有元素 互不相同
  • 1 <= target <= 1000

进阶:如果给定的数组中含有负数会发生什么?问题会产生何种变化?如果允许负数出现,需要向题目中添加哪些限制条件?

思路:

[!TIP]

本题题目描述说是求组合,但又说是可以元素相同顺序不同的组合算两个组合,其实就是求排列!

弄清什么是组合,什么是排列很重要。

组合不强调顺序,(1,5)和(5,1)是同一个组合。

排列强调顺序,(1,5)和(5,1)是两个不同的排列。

大家在公众号里学习回溯算法专题的时候,一定做过这两道题目回溯算法:39.组合总和 (opens new window)回溯算法:40.组合总和II (opens new window)会感觉这两题和本题很像!

但其本质是本题求的是排列总和,而且仅仅是求排列总和的个数,并不是把所有的排列都列出来。

如果本题要把排列都列出来的话,只能使用回溯算法爆搜

动规五部曲分析如下:

  1. 确定dp数组以及下标的含义

dp[i]: 凑成目标正整数为i的排列个数为dp[i]

  1. 确定递推公式

dp[i](考虑nums[j])可以由 dp[i - nums[j]](不考虑nums[j]) 推导出来。

因为只要得到nums[j],排列个数dp[i - nums[j]],就是dp[i]的一部分。

动态规划:494.目标和 (opens new window)动态规划:518.零钱兑换II (opens new window)中我们已经讲过了,求装满背包有几种方法,递推公式一般都是dp[i] += dp[i - nums[j]];

本题也一样。

  1. dp数组如何初始化

因为递推公式dp[i] += dp[i - nums[j]]的缘故,dp[0]要初始化为1,这样递归其他dp[i]的时候才会有数值基础。

至于dp[0] = 1 有没有意义呢?

其实没有意义,所以我也不去强行解释它的意义了,因为题目中也说了:给定目标值是正整数! 所以dp[0] = 1是没有意义的,仅仅是为了推导递推公式。

至于非0下标的dp[i]应该初始为多少呢?

初始化为0,这样才不会影响dp[i]累加所有的dp[i - nums[j]]

  1. 确定遍历顺序

个数可以不限使用,说明这是一个完全背包。

得到的集合是排列,说明需要考虑元素之间的顺序。

本题要求的是排列,那么这个for循环嵌套的顺序可以有说法了。

动态规划:518.零钱兑换II (opens new window)中就已经讲过了。

如果求组合数就是外层for循环遍历物品,内层for遍历背包

如果求排列数就是外层for遍历背包,内层for循环遍历物品

如果把遍历nums(物品)放在外循环,遍历target作为内循环的话,举一个例子:计算dp[4]的时候,结果集只有 {1,3} 这样的集合,不会有{3,1}这样的集合,因为nums遍历放在外层,3只能出现在1后面!

所以本题遍历顺序最终遍历顺序:target(背包)放在外循环,将nums(物品)放在内循环,内循环从前到后遍历

  1. 举例来推导dp数组

我们再来用示例中的例子推导一下:

377.组合总和Ⅳ

如果代码运行处的结果不是想要的结果,就把dp[i]都打出来,看看和我们推导的一不一样。

以上分析完毕,C++代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
class Solution {
public:
int combinationSum4(vector<int>& nums, int target) {
vector<int> dp(target + 1, 0);
dp[0] = 1;
for (int i = 0; i <= target; i++) { // 遍历背包
for (int j = 0; j < nums.size(); j++) { // 遍历物品
if (i - nums[j] >= 0 && dp[i] < INT_MAX - dp[i - nums[j]]) {
dp[i] += dp[i - nums[j]];
}
}
}
return dp[target];
}
};
  • 时间复杂度: O(target * n),其中 n 为 nums 的长度
  • 空间复杂度: O(target)

C++测试用例有两个数相加超过int的数据,所以需要在if里加上dp[i] < INT_MAX - dp[i - num]

但java就不用考虑这个限制,java里的int也是四个字节吧,也有可能leetcode后台对不同语言的测试数据不一样。

总结

求装满背包有几种方法,递归公式都是一样的,没有什么差别,但关键在于遍历顺序!

本题与动态规划:518.零钱兑换II (opens new window)就是一个鲜明的对比,一个是求排列,一个是求组合,遍历顺序完全不同。

如果对遍历顺序没有深度理解的话,做这种完全背包的题目会很懵逼,即使题目刷过了可能也不太清楚具体是怎么过的。

此时大家应该对动态规划中的遍历顺序又有更深的理解了。


70. 爬楼梯(进阶版)

题意描述:

[!NOTE]

题目描述

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬至多m (1 <= m < n)个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

输入描述

输入共一行,包含两个正整数,分别表示n, m

输出描述

输出一个整数,表示爬到楼顶的方法数。

输入示例
1
3 2
输出示例
1
3
提示信息

数据范围:
1 <= m < n <= 32;

当 m = 2,n = 3 时,n = 3 这表示一共有三个台阶,m = 2 代表你每次可以爬一个台阶或者两个台阶。

此时你有三种方法可以爬到楼顶。

  1. 1 阶 + 1 阶 + 1 阶段
  2. 1 阶 + 2 阶
  3. 2 阶 + 1 阶

思路:

[!TIP]

之前讲这道题目的时候,因为还没有讲背包问题,所以就只是讲了一下爬楼梯最直接的动规方法(斐波那契)。

这次终于讲到了背包问题,我选择带录友们再爬一次楼梯!

这道题目 我们在动态规划:爬楼梯 (opens new window)中已经讲过一次了,这次我又给本题加点料,力扣上没有原题,所以可以在卡码网57. 爬楼梯 (opens new window)上来刷这道题目。

我们之前做的 爬楼梯 是只能至多爬两个台阶。

这次改为:一步一个台阶,两个台阶,三个台阶,…….,直到 m个台阶。问有多少种不同的方法可以爬到楼顶呢?

这又有难度了,这其实是一个完全背包问题。

1阶,2阶,…. m阶就是物品,楼顶就是背包。

每一阶可以重复使用,例如跳了1阶,还可以继续跳1阶。问跳到楼顶有几种方法其实就是问装满背包有几种方法。

此时大家应该发现这就是一个完全背包问题了!

和昨天的题目动态规划:377. 组合总和 Ⅳ (opens new window)基本就是一道题了。

动规五部曲分析如下:

  1. 确定dp数组以及下标的含义

dp[i]:爬到有i个台阶的楼顶,有dp[i]种方法

  1. 确定递推公式

动态规划:494.目标和 (opens new window)动态规划:518.零钱兑换II (opens new window)动态规划:377. 组合总和 Ⅳ (opens new window)中我们都讲过了,求装满背包有几种方法,递推公式一般都是dp[i] += dp[i - nums[j]];

本题呢,dp[i]有几种来源,dp[i - 1],dp[i - 2],dp[i - 3] 等等,即:dp[i - j]

那么递推公式为:dp[i] += dp[i - j]

  1. dp数组如何初始化

既然递归公式是 dp[i] += dp[i - j],那么dp[0] 一定为1,dp[0]是递归中一切数值的基础所在,如果dp[0]是0的话,其他数值都是0了。

下标非0的dp[i]初始化为0,因为dp[i]是靠dp[i-j]累计上来的,dp[i]本身为0这样才不会影响结果

  1. 确定遍历顺序

这是背包里求排列问题,即:1、2 步 和 2、1 步都是上三个台阶,但是这两种方法不一样!

所以需将target放在外循环,将nums放在内循环。

每一步可以走多次,这是完全背包,内循环需要从前向后遍历。

  1. 举例来推导dp数组

介于本题和动态规划:377. 组合总和 Ⅳ (opens new window)几乎是一样的,这里我就不再重复举例了。

以上分析完毕,C++代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#include <iostream>
#include <vector>
using namespace std;
int main() {
int n, m;
while (cin >> n >> m) {
vector<int> dp(n + 1, 0);
dp[0] = 1;
for (int i = 1; i <= n; i++) { // 遍历背包
for (int j = 1; j <= m; j++) { // 遍历物品
if (i - j >= 0) dp[i] += dp[i - j];
}
}
cout << dp[n] << endl;
}
}
  • 时间复杂度: O(n * m)
  • 空间复杂度: O(n)

代码中m表示最多可以爬m个台阶,代码中把m改成2就是 力扣:70.爬楼梯的解题思路。

当然注意 力扣是 核心代码模式,卡码网是ACM模式

总结

本题看起来是一道简单题目,稍稍进阶一下其实就是一个完全背包!

如果我来面试的话,我就会先给候选人出一个 本题原题,看其表现,如果顺利写出来,进而在要求每次可以爬[1 - m]个台阶应该怎么写。

顺便再考察一下两个for循环的嵌套顺序,为什么target放外面,nums放里面。

这就能考察对背包问题本质的掌握程度,候选人是不是刷题背公式,一眼就看出来了。

这么一连套下来,如果候选人都能答出来,相信任何一位面试官都是非常满意的。

本题代码不长,题目也很普通,但稍稍一进阶就可以考察完全背包,而且题目进阶的内容在leetcode上并没有原题,一定程度上就可以排除掉刷题党了,简直是面试题目的绝佳选择!


7.11-DP:完全背包问题
https://bing.7dragonpig.cn/posts/d6a09b45/
作者
七龙猪
发布于
2024年7月11日
许可协议