6.3-二分查找

本文最后更新于 2024年10月21日 早上

704. 二分查找

力扣题目链接

题意描述:给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。

这道题目的前提是数组为有序数组,同时题目还强调数组中无重复元素,因为一旦有重复元素,使用二分查找法返回的元素下标可能不是唯一的,这些都是使用二分法的前提条件。二分查找涉及的很多的边界条件,逻辑比较简单,但就是写不好。例如到底是 while(left < right) 还是 while(left <= right),到底是right = middle呢,还是要right = middle - 1呢?

大家写二分法经常写乱,主要是因为对区间的定义没有想清楚,区间的定义就是不变量。要在二分查找的过程中,保持不变量,就是在while寻找中每一次边界的处理都要坚持根据区间的定义来操作,这就是循环不变量规则。

写二分法,区间的定义一般为两种,左闭右闭即[left, right],或者左闭右开即[left, right)。

写法一:

如果说定义 target 是在一个在==左闭右开==的区间里,也就是[left, right) ,那么二分法的边界处理方式则截然不同。

有如下两点:

  • while (left < right),这里使用 < ,因为left == right在区间[left, right)是没有意义的
  • if (nums[middle] > target) right 更新为 middle,因为当前nums[middle]不等于target,去左区间继续寻找,而寻找区间是左闭右开区间,所以right更新为middle,即:下一个查询区间不会去比较nums[middle]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class Solution {
public:
int search(vector<int>& nums, int target) {
int left = 0;
int right = nums.size(); // 定义target在左闭右开的区间里,即:[left, right)
while (left < right) { // 因为left == right的时候,在[left, right)是无效的空间,所以使用 <
int middle = left + ((right - left) >> 1);//移位运算优先级比算数运算低,要加括号
if (nums[middle] > target) {
right = middle; // target 在左区间,在[left, middle)中
} else if (nums[middle] < target) {
left = middle + 1; // target 在右区间,在[middle + 1, right)中
} else { // nums[middle] == target
return middle; // 数组中找到目标值,直接返回下标
}
}
// 未找到目标值
return -1;
}
};

写法二

我们定义 target 是在一个在左闭右闭的区间里,也就是[left, right] (这个很重要非常重要)

区间的定义这就决定了二分法的代码应该如何写,因为定义target在[left, right]区间,所以有如下两点:

  • while (left <= right) 要使用 <= ,因为left == right是有意义的,所以使用 <=
  • if (nums[middle] > target) right 要赋值为 middle - 1,因为当前这个nums[middle]一定不是target,那么接下来要查找的左区间结束下标位置就是 middle - 1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class Solution {
public:
int search(vector<int>& nums, int target) {
int left = 0;
int right = nums.size() - 1; // 定义target在左闭右闭的区间里,[left, right]
while (left <= right) { // 当left==right,区间[left, right]依然有效,所以用 <=
int middle = left + ((right - left) / 2);// 防止溢出 等同于(left + right)/2
if (nums[middle] > target) {
right = middle - 1; // target 在左区间,所以[left, middle - 1]
} else if (nums[middle] < target) {
left = middle + 1; // target 在右区间,所以[middle + 1, right]
} else { // nums[middle] == target
return middle; // 数组中找到目标值,直接返回下标
}
}
// 未找到目标值
return -1;
}
};
  • 时间复杂度:O(log n)
  • 空间复杂度:O(1)

35.搜索插入位置

力扣题目链接

题意:给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。你可以假设数组中无重复元素。

示例 1:

  • 输入: [1,3,5,6], 5
  • 输出: 2

示例 2:

  • 输入: [1,3,5,6], 2
  • 输出: 1

示例 3:

  • 输入: [1,3,5,6], 7
  • 输出: 4

示例 4:

  • 输入: [1,3,5,6], 0
  • 输出: 0

这道题目,要在数组中插入目标值,有以下这四种情况。

  • 目标值在数组所有元素之前
  • 目标值等于数组中某一个元素
  • 目标值插入数组中的位置
  • 目标值在数组所有元素之后

35_搜索插入位置3

解一:暴力

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
class Solution {
public:
int searchInsert(vector<int>& nums, int target) {
for (int i = 0; i < nums.size(); i++) {
// 分别处理如下三种情况
// 目标值在数组所有元素之前
// 目标值等于数组中某一个元素
// 目标值插入数组中的位置
if (nums[i] >= target) { // 一旦发现大于或者等于target的num[i],那么i就是我们要的结果
return i;
}
}
// 目标值在数组所有元素之后的情况
return nums.size(); // 如果target是最大的,或者 nums为空,则返回nums的长度
}
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

解二:二分

题意有==有序+无重复==

注意这道题目的前提是数组是有序数组,这也是使用二分查找的基础条件。

以后大家只要看到面试题里给出的数组是有序数组,都可以想一想是否可以使用二分法。

同时题目还强调数组中无重复元素,因为一旦有重复元素,使用二分查找法返回的元素下标可能不是唯一的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution {
public:
int searchInsert(vector<int>& nums, int target) {
int n = nums.size();
int left = 0;
int right = n - 1; // 定义target在左闭右闭的区间里,[left, right]
while (left <= right) { // 当left==right,区间[left, right]依然有效
int middle = left + ((right - left) / 2);// 防止溢出 等同于(left + right)/2
if (nums[middle] > target) {
right = middle - 1; // target 在左区间,所以[left, middle - 1]
} else if (nums[middle] < target) {
left = middle + 1; // target 在右区间,所以[middle + 1, right]
} else { // nums[middle] == target
return middle;
}
}
// 分别处理如下四种情况
// 目标值在数组所有元素之前 [0, -1]
// 目标值等于数组中某一个元素 return middle;
// 目标值插入数组中的位置 [left, right],return right + 1
// 目标值在数组所有元素之后的情况 [left, right], 因为是右闭区间,所以 return right + 1
return right + 1;
}
};
  • 时间复杂度:O(log n)
  • 空间复杂度:O(1)

34. 在排序数组中查找元素的第一个和最后一个位置

力扣链接(opens new window)

本题与ACwing789.数的范围类似

题意:

给定一个按照升序排列的整数数组 nums,和一个目标值 target。找出给定目标值在数组中的开始位置和结束位置。

如果数组中不存在目标值 target,返回 [-1, -1]。

进阶:你可以设计并实现时间复杂度为 $O(\log n)$ 的算法解决此问题吗?

示例 1:

  • 输入:nums = [5,7,7,8,8,10], target = 8
  • 输出:[3,4]

示例 2:

  • 输入:nums = [5,7,7,8,8,10], target = 6
  • 输出:[-1,-1]

示例 3:

  • 输入:nums = [], target = 0
  • 输出:[-1,-1]

分析:

下面我来把所有情况都讨论一下。

寻找target在数组里的左右边界,有如下三种情况:

  • 情况一:target 在数组范围的右边或者左边,例如数组{3, 4, 5},target为2或者数组{3, 4, 5},target为6,此时应该返回{-1, -1}
  • 情况二:target 在数组范围中,且数组中不存在target,例如数组{3,6,7},target为5,此时应该返回{-1, -1}
  • 情况三:target 在数组范围中,且数组中存在target,例如数组{3,6,7},target为6,此时应该返回{1, 1}

这三种情况都考虑到,说明就想的很清楚了。

这里采用while (left <= right)的写法,区间定义为[left, right],即左闭右闭的区间。确定好:计算出来的右边界是不包含target的右边界,左边界同理。

右边界:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
// 二分查找,寻找target的右边界(不包括target)
// 如果rightBorder为没有被赋值(即target在数组范围的左边,例如数组[3,3],target为2),为了处理情况一
int getRightBorder(vector<int>& nums, int target) {
int left = 0;
int right = nums.size() - 1; // 定义target在左闭右闭的区间里,[left, right]
int rightBorder = -2; // 记录一下rightBorder没有被赋值的情况
while (left <= right) { // 当left==right,区间[left, right]依然有效
int middle = left + ((right - left) / 2);// 防止溢出 等同于(left + right)/2
if (nums[middle] > target) {
right = middle - 1; // target 在左区间,所以[left, middle - 1]
} else { // 当nums[middle] == target的时候,更新left,这样才能得到target的右边界
left = middle + 1;
rightBorder = left;
}
}
return rightBorder;
}

左边界:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
// 二分查找,寻找target的左边界leftBorder(不包括target)
// 如果leftBorder没有被赋值(即target在数组范围的右边,例如数组[3,3],target为4),为了处理情况一
int getLeftBorder(vector<int>& nums, int target) {
int left = 0;
int right = nums.size() - 1; // 定义target在左闭右闭的区间里,[left, right]
int leftBorder = -2; // 记录一下leftBorder没有被赋值的情况
while (left <= right) {
int middle = left + ((right - left) / 2);
if (nums[middle] >= target) { // 寻找左边界,就要在nums[middle] == target的时候更新right
right = middle - 1;
leftBorder = right;
} else {
left = middle + 1;
}
}
return leftBorder;
}

处理三种情况

左右边界计算完之后,看一下主体代码,这里把上面讨论的三种情况,都覆盖了

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
class Solution {
public:
vector<int> searchRange(vector<int>& nums, int target) {
int leftBorder = getLeftBorder(nums, target);
int rightBorder = getRightBorder(nums, target);
// 情况一
if (leftBorder == -2 || rightBorder == -2) return {-1, -1};
// 情况三
if (rightBorder - leftBorder > 1) return {leftBorder + 1, rightBorder - 1};
// 情况二
else return {-1, -1};
}
private:
int getRightBorder(vector<int>& nums, int target){
int l = 0;
int r = nums.size() - 1;
int rightBorder = -2;
while(l <= r){
int mid = l + (r - l) / 2;
if(nums[mid] > target) r = mid - 1;
else {
l = mid + 1;
rightBorder = l;
}
}
return rightBorder;
};

private:
int getLeftBorder(vector<int>& nums,int target){
int l = 0;
int r = nums.size() - 1;
int leftBorder = -2;
while(l <= r){
int mid = l + (r - l) / 2;
if(nums[mid] < target) l = mid + 1;
else{
r = mid - 1;
leftBorder = r;
}
}
return leftBorder;
}
};

69. x 的平方根

题目描述:给你一个非负整数 x ,计算并返回 x算术平方根 。由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。

注意:不允许使用任何内置指数函数和算符,例如 pow(x, 0.5) 或者 x ** 0.5

由于 x 平方根的整数部分 ans是满足==k^2 <=x==的最大 k 值,因此我们可以对 k 进行二分查找,从而得到答案。

二分查找的下界为 0,上界可以粗略地设定为 x。在二分查找的每一步中,我们只需要比较中间元素 mid 的平方与 x 的大小关系,并通过比较的结果调整上下界的范围。由于我们所有的运算都是整数运算,不会存在误差,因此在得到最终的答案==ans== 后,也就不需要再去尝试 ==ans+1== 了。

此题相当于找右边界的写法。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class Solution {
public:
int mySqrt(int x) {
int l = 0, r = x, ans = -1;
while (l <= r) {
int mid = l + (r - l) / 2;
if ((long long)mid * mid <= x) {
ans = mid;
l = mid + 1;
} else {
r = mid - 1;
}
}
return ans;
}
};

另解:牛顿迭代法

牛顿迭代法是一种可以用来快速求解函数零点的方法。

为了叙述方便,我们用 C 表示待求出平方根的那个整数。显然,C 的平方根就是函数y=f(x)=x^2−C的零点。

image-20240603211906832

image-20240603211948658

我们希望找到的是 sqrtC 这个零点。因此选择 x0=C作为初始值,每次迭代均有 xi+1<xi ,零点 sqrtC在其左侧,所以我们一定会迭代到这个零点。

每一次迭代后,我们都会距离零点更进一步,所以当相邻两次迭代得到的交点非常接近时,我们就可以断定,此时的结果已经足够我们得到答案了。一般来说,可以判断相邻两次迭代的结果的差值是否小于一个极小的非负数 ϵ,其中 ϵ 一般可以1e-6或1e-7 。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Solution {
public:
int mySqrt(int x) {
if (x == 0) {
return 0;
}

double C = x, x0 = x;
while (true) {
double xi = 0.5 * (x0 + C / x0);
if (fabs(x0 - xi) < 1e-7) {
break;
}
x0 = xi;
}
return int(x0);
}
};

复杂度分析

  • 时间复杂度:O(log⁡x),此方法是二次收敛的,相较于二分查找更快。
  • 空间复杂度:O(1)。

367.有效的完全平方数

题目描述:给你一个正整数 num 。如果 num 是一个完全平方数,则返回 true ,否则返回 false

完全平方数 是一个可以写成某个整数的平方的整数。换句话说,它可以写成某个整数和自身的乘积。

不能使用任何内置的库函数,如 sqrt

分析同上道题

解法一:二分

1
2
3
4
5
6
7
8
9
10
11
12
13
class Solution {
public:
bool isPerfectSquare(int num) {
int l = 0 , r = num;
while(l <= r){
int mid = l + (r - l) / 2;
if((long)mid * mid < num) l = mid + 1;
else if((long)mid * mid > num) r = mid - 1;
else return true;
}
return false;
}
};

解法二:牛顿迭代法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
class Solution {
public:
bool isPerfectSquare(int num) {
double x0 = num;
while (true) {
double x1 = (x0 + num / x0) / 2;
if (x0 - x1 < 1e-6) {
break;
}
x0 = x1;
}
int x = (int) x0;
return x * x == num;
}
};


27. 移除元素

力扣题目链接(opens new window)

题意描述:给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。

不要使用额外的数组空间,你必须仅使用 O(1) 额外空间并原地修改输入数组。

元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。

示例 1: 给定 nums = [3,2,2,3], val = 3, 函数应该返回新的长度 2, 并且 nums 中的前两个元素均为 2。 你不需要考虑数组中超出新长度后面的元素。

示例 2: 给定 nums = [0,1,2,2,3,0,4,2], val = 2, 函数应该返回新的长度 5, 并且 nums 中的前五个元素为 0, 1, 3, 0, 4。

你不需要考虑数组中超出新长度后面的元素。

双指针法

双指针法(快慢指针法): 通过一个快指针和慢指针在一个for循环下完成两个for循环的工作。

定义快慢指针

  • 快指针:寻找新数组的元素 ,新数组就是不含有目标元素的数组
  • 慢指针:指向更新 新数组下标的位置

双指针法(快慢指针法)在数组和链表的操作中是非常常见的,很多考察数组、链表、字符串等操作的面试题,都使用双指针法。

后续都会一一介绍到,本题代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
// 时间复杂度:O(n)
// 空间复杂度:O(1)
class Solution {
public:
int removeElement(vector<int>& nums, int val) {
int slow = 0;
for(int fast = 0 ; fast < nums.size() ; fast++){
if(nums[fast] != val) nums[slow++] = nums[fast];
}
return slow;
}
};

6.3-二分查找
https://bing.7dragonpig.cn/posts/9b5fc9b3/
作者
七龙猪
发布于
2024年6月3日
许可协议