9.24-9.27 深搜广搜

本文最后更新于 2024年10月21日 早上

9/24

深搜框架:

1
2
3
4
5
6
7
8
9
10
11
12
void dfs(参数) {
if (终止条件) {
存放结果;
return;
}

for (选择:本节点所连接的其他节点) {
处理节点;
dfs(图,选择的节点); // 递归
回溯,撤销处理结果
}
}

深搜三部曲:

  1. 确认递归函数,参数
1
void dfs(参数)

通常我们递归的时候,我们递归搜索需要了解哪些参数,其实也可以在写递归函数的时候,发现需要什么参数,再去补充就可以。

一般情况,深搜需要 二维数组数组结构保存所有路径,需要一维数组保存单一路径,这种保存结果的数组,我们可以定义一个全局变量,避免让我们的函数参数过多。

例如这样:

1
2
3
vector<vector<int>> result; // 保存符合条件的所有路径
vector<int> path; // 起点到终点的路径
void dfs (图,目前搜索的节点)
  1. 确认终止条件

终止条件很重要,很多同学写dfs的时候,之所以容易死循环,栈溢出等等这些问题,都是因为终止条件没有想清楚。

1
2
3
4
if (终止条件) {
存放结果;
return;
}

终止添加不仅是结束本层递归,同时也是我们收获结果的时候。

另外,其实很多dfs写法,没有写终止条件,其实终止条件写在了, 下面dfs递归的逻辑里了,也就是不符合条件,直接不会向下递归。这里如果大家不理解的话,没关系,后面会有具体题目来讲解。

  1. 处理目前搜索节点出发的路径

一般这里就是一个for循环的操作,去遍历 ==目前搜索节点 所能到的所有节点==。

1
2
3
4
5
for (选择:本节点所连接的其他节点) {
处理节点;
dfs(图,选择的节点); // 递归
回溯,撤销处理结果
}

98. 所有可达路径

有向图路径问题,适合深搜

题目描述:

给定一个有 n 个节点的有向无环图,节点编号从 1 到 n。请编写一个函数,找出并返回所有从节点 1 到节点 n 的路径。每条路径应以节点编号的列表形式表示。

输入描述

第一行包含两个整数 N,M,表示图中拥有 N 个节点,M 条边

后续 M 行,每行包含两个整数 s 和 t,表示图中的 s 节点与 t 节点中有一条路径

输出描述

输出所有的可达路径,路径中所有节点之间空格隔开,每条路径独占一行,存在多条路径,路径输出的顺序可任意。如果不存在任何一条路径,则输出 -1。

注意输出的序列中,最后一个节点后面没有空格! 例如正确的答案是 1 3 5,而不是 1 3 5, 5后面没有空格!

输入示例
1
2
3
4
5
6
5 5
1 3
3 5
1 2
2 4
4 5
输出示例
1
2
1 3 5
1 2 4 5
提示信息

img

用例解释:

有五个节点,其中的从 1 到达 5 的路径有两个,分别是 1 -> 3 -> 5 和 1 -> 2 -> 4 -> 5。

因为拥有多条路径,所以输出结果为:

1 3 5
1 2 4 5

1 2 4 51 3 5
都算正确。

数据范围:

  • 图中不存在自环
  • 图中不存在平行边
  • 1 <= N <= 100
  • 1 <= M <= 500

思路:

两种图的存储方式:邻接表邻接矩阵

邻接矩阵

使用 二维数组来表示图结构。 邻接矩阵是从节点的角度来表示图,有多少节点就申请多大的二维数组。

本题我们会有n 个节点,因为节点标号是从1开始的,为了节点标号和下标对齐,我们申请 n + 1 * n + 1 这么大的二维数组。

1
vector<vector<int>> graph(n + 1, vector<int>(n + 1, 0));

输入m个边,构造方式如下:

1
2
3
4
5
while (m--) {
cin >> s >> t;
// 使用邻接矩阵 ,1 表示 节点s 指向 节点t
graph[s][t] = 1;
}

邻接表

使用 数组 + 链表的方式来表示。 邻接表是从边的数量来表示图,有多少边 才会申请对应大小的链表。邻接表的构造相对邻接矩阵难理解一些。

img

这里表达的图是:

  • 节点1 指向 节点3 和 节点5
  • 节点2 指向 节点4、节点3、节点5
  • 节点3 指向 节点4
  • 节点4指向节点1

我们需要构造一个数组,数组里的元素是一个链表。

C++写法:

1
2
// 节点编号从1到n,所以申请 n+1 这么大的数组
vector<list<int>> graph(n + 1); // 邻接表,list为C++里的链表

输入m个边,构造方式如下:

1
2
3
4
5
while (m--) {
cin >> s >> t;
// 使用邻接表 ,表示 s -> t 是相连的
graph[s].push_back(t);
}

本题我们使用邻接表 或者 邻接矩阵都可以,因为后台数据并没有对图的大小以及稠密度做很大的区分。

以下我们使用邻接矩阵的方式来讲解,文末我也会给出 使用邻接表的整体代码。

注意邻接表 和 邻接矩阵的写法都要掌握

深搜三部曲来分析题目:

  1. 确认递归函数,参数

首先我们dfs函数一定要存一个图,用来遍历的,需要存一个目前我们遍历的节点,定义为x。

还需要存一个n,表示终点,我们遍历的时候,用来判断当 x==n 时候 标明找到了终点。

(其实在递归函数的参数 不容易一开始就确定了,一般是在写函数体的时候发现缺什么,参加就补什么)

至于 单一路径 和 路径集合 可以放在全局变量,那么代码是这样的:

1
2
3
4
5
6
vector<vector<int>> result; // 收集符合条件的路径
vector<int> path; // 0节点到终点的路径
// x:目前遍历的节点
// graph:存当前的图
// n:终点
void dfs (const vector<vector<int>>& graph, int x, int n) {
  1. 确认终止条件

什么时候我们就找到一条路径了?

当目前遍历的节点 为 最后一个节点 n 的时候 就找到了一条 从出发点到终止点的路径。

1
2
3
4
5
// 当前遍历的节点x 到达节点n 
if (x == n) { // 找到符合条件的一条路径
result.push_back(path);
return;
}
  1. 处理目前搜索节点出发的路径

接下来是走 当前遍历节点x的下一个节点。

首先是要找到 x节点指向了哪些节点呢? 遍历方式是这样的:

1
2
3
4
for (int i = 1; i <= n; i++) { // 遍历节点x链接的所有节点
if (graph[x][i] == 1) { // 找到 x指向的节点,就是节点i
}
}

接下来就是将 选中的x所指向的节点,加入到 单一路径来。

1
path.push_back(i); // 遍历到的节点加入到路径中来

进入下一层递归

1
dfs(graph, i, n); // 进入下一层递归

最后就是回溯的过程,撤销本次添加节点的操作。

为什么要有回溯,我在图论深搜理论基础 也有详细的讲解。

该过程整体代码:

1
2
3
4
5
6
7
for (int i = 1; i <= n; i++) { // 遍历节点x链接的所有节点
if (graph[x][i] == 1) { // 找到 x链接的节点
path.push_back(i); // 遍历到的节点加入到路径中来
dfs(graph, i, n); // 进入下一层递归
path.pop_back(); // 回溯,撤销本节点
}
}

打印结果

ACM格式大家在输出结果的时候,要关注看看格式问题,特别是字符串,有的题目说的是每个元素后面都有空格,有的题目说的是 每个元素间有空格,最后一个元素没有空格。

有的题目呢,压根没说,那只能提交去试一试了。

很多录友在提交题目的时候发现结果一样,为什么提交就是不对呢。

例如示例输出是:

1
1 3 5` 而不是 `1 3 5

即 5 的后面没有空格!

这是我们在输出的时候需要注意的点。

有录友可能会想,ACM格式就是麻烦,有空格没有空格有什么影响,结果对了不就行了?

ACM模式相对于核心代码模式(力扣) 更考验大家对代码的掌控能力。 例如工程代码里,输出输出都是要自己控制的。这也是为什么大公司笔试,都是ACM模式。

以上代码中,结果都存在了result数组里(二维数组,每一行是一个结果),最后将其打印出来。(重点看注释)

1
2
3
4
5
6
7
8
// 输出结果
if (result.size() == 0) cout << -1 << endl;
for (const vector<int> &pa : result) {
for (int i = 0; i < pa.size() - 1; i++) { // 这里指打印到倒数第二个
cout << pa[i] << " ";
}
cout << pa[pa.size() - 1] << endl; // 这里再打印倒数第一个,控制最后一个元素后面没有空格
}

AC代码:

邻接矩阵法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#include <iostream>
#include <vector>
using namespace std;
vector<vector<int>> res; // 收集符合条件的路径
vector<int> path; // 1节点到终点的路径

void dfs (const vector<vector<int>>& graph, int x, int n) {
// 当前遍历的节点x 到达节点n
if (x == n) { // 找到符合条件的一条路径
res.push_back(path);
return;
}
for (int i = 1; i <= n; i++) { // 遍历节点x链接的所有节点
if (graph[x][i] == 1) { // 找到 x链接的节点
path.push_back(i); // 遍历到的节点加入到路径中来
dfs(graph, i, n); // 进入下一层递归
path.pop_back(); // 回溯,撤销本节点
}
}
}

int main() {
int n, m, s, t;
cin >> n >> m;

// 节点编号从1到n,所以申请 n+1 这么大的数组
vector<vector<int>> graph(n + 1, vector<int>(n + 1, 0));

while (m--) {
cin >> s >> t;
// 使用邻接矩阵 表示无线图,1 表示 s 与 t 是相连的
graph[s][t] = 1;
}

path.push_back(1); // 无论什么路径都是从节点1出发
dfs(graph, 1, n); // 开始遍历

// 输出结果
if (result.size() == 0) cout << -1 << endl;
for (const vector<int> &pa : result) {
for (int i = 0; i < pa.size() - 1; i++) {
cout << pa[i] << " ";
}
cout << pa[pa.size() - 1] << endl;
}
}

邻接表写法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#include <iostream>
#include <vector>
#include <list>
using namespace std;

vector<vector<int>> result; // 收集符合条件的路径
vector<int> path; // 1节点到终点的路径

void dfs (const vector<list<int>>& graph, int x, int n) {

if (x == n) { // 找到符合条件的一条路径
result.push_back(path);
return;
}
for (int i : graph[x]) { // 找到 x指向的节点
path.push_back(i); // 遍历到的节点加入到路径中来
dfs(graph, i, n); // 进入下一层递归
path.pop_back(); // 回溯,撤销本节点
}
}

int main() {
int n, m, s, t;
cin >> n >> m;

// 节点编号从1到n,所以申请 n+1 这么大的数组
vector<list<int>> graph(n + 1); // 邻接表
while (m--) {
cin >> s >> t;
// 使用邻接表 ,表示 s -> t 是相连的
graph[s].push_back(t);
}

path.push_back(1); // 无论什么路径已经是从0节点出发
dfs(graph, 1, n); // 开始遍历

// 输出结果
if (result.size() == 0) cout << -1 << endl;
for (const vector<int> &pa : result) {
for (int i = 0; i < pa.size() - 1; i++) {
cout << pa[i] << " ";
}
cout << pa[pa.size() - 1] << endl;
}
}

总结

本题是一道简单的深搜题目,也可以说是模板题,和 力扣797. 所有可能的路径 (opens new window)思路是一样一样的。

写法类似于邻接表,因为给出来的就是连接的节点

AC代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class Solution {
private:
vector<vector<int>> result; // 收集符合条件的路径
vector<int> path; // 0节点到终点的路径
// x:目前遍历的节点
// graph:存当前的图
void dfs (vector<vector<int>>& graph, int x) {
// 要求从节点 0 到节点 n-1 的路径并输出,所以是 graph.size() - 1
if (x == graph.size() - 1) { // 找到符合条件的一条路径
result.push_back(path);
return;
}
for (int i = 0; i < graph[x].size(); i++) { // 遍历节点n链接的所有节点
path.push_back(graph[x][i]); // 遍历到的节点加入到路径中来
dfs(graph, graph[x][i]); // 进入下一层递归
path.pop_back(); // 回溯,撤销本节点
}
}
public:
vector<vector<int>> allPathsSourceTarget(vector<vector<int>>& graph) {
path.push_back(0); // 无论什么路径已经是从0节点出发
dfs(graph, 0); // 开始遍历
return result;
}
};

对于这种有向图路径问题最合适使用深搜,当然本题也可以使用广搜,但广搜相对来说就麻烦了一些,需要记录一下路径。

而深搜和广搜都适合解决颜色类的问题,例如岛屿系列,其实都是 遍历+标记,所以使用哪种遍历都是可以的。


广搜

使用场景

广搜的搜索方式就适合于解决两个点之间的最短路径问题

因为广搜是从起点出发,以起始点为中心一圈一圈进行搜索,一旦遇到终点,记录之前走过的节点就是一条最短路。

当然,也有一些问题是广搜 和 深搜都可以解决的,例如岛屿问题,这类问题的特征就是不涉及具体的遍历方式,只要能把相邻且相同属性的节点标记上就行。 (我们会在具体题目讲解中详细来说)

广搜的过程

上面我们提过,BFS是一圈一圈的搜索过程,但具体是怎么一圈一圈来搜呢。

我们用一个方格地图,假如每次搜索的方向为 上下左右(不包含斜上方),那么给出一个start起始位置,那么BFS就是从四个方向走出第一步。

图一

如果加上一个end终止位置,那么使用BFS的搜索过程如图所示:

图二

我们从图中可以看出,从start起点开始,是一圈一圈,向外搜索,方格编号1为第一步遍历的节点,方格编号2为第二步遍历的节点,第四步的时候我们找到终止点end。

正是因为BFS一圈一圈的遍历方式,所以一旦遇到终止点,那么一定是一条最短路径。

而且地图还可以有障碍,如图所示:

图三

在第五步,第六步 我只把关键的节点染色了,其他方向周边没有去染色,大家只要关注关键地方染色的逻辑就可以。

从图中可以看出,如果添加了障碍,我们是第六步才能走到end终点。

只要BFS只要搜到终点一定是一条最短路径,大家可以参考上面的图,自己再去模拟一下。

代码框架

大家应该好奇,这一圈一圈的搜索过程是怎么做到的,是放在什么容器里,才能这样去遍历。

很多网上的资料都是直接说用队列来实现。

其实,我们仅仅需要一个容器能保存我们要遍历过的元素就可以,那么用队列,还是用栈,甚至用数组,都是可以的

用队列的话,就是保证每一圈都是一个方向去转,例如统一顺时针或者逆时针

因为队列是先进先出,加入元素和弹出元素的顺序是没有改变的。

如果用栈的话,就是第一圈顺时针遍历,第二圈逆时针遍历,第三圈有顺时针遍历

因为栈是先进后出,加入元素和弹出元素的顺序改变了。

那么广搜需要注意 转圈搜索的顺序吗? 不需要!

所以用队列,还是用栈都是可以的,但大家都习惯用队列了,所以下面的讲解用我也用队列来讲,只不过要给大家说清楚,并不是非要用队列,用栈也可以

下面给出广搜代码模板,该模板针对的就是,上面的四方格的地图: (详细注释)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
int dir[4][2] = {0, 1, 1, 0,  0, -1 , -1 , 0}; // 表示四个方向
// grid 是地图,也就是一个二维数组
// visited标记访问过的节点,不要重复访问
// x,y 表示开始搜索节点的下标
void bfs(vector<vector<char>>& grid, vector<vector<bool>>& visited, int x, int y) {
queue<pair<int, int>> que; // 定义队列
que.push({x, y}); // 起始节点加入队列
visited[x][y] = true; // 只要加入队列,立刻标记为访问过的节点
while(!que.empty()) { // 开始遍历队列里的元素
pair<int ,int> cur = que.front(); que.pop(); // 从队列取元素
int curx = cur.first;
int cury = cur.second; // 当前节点坐标
for (int i = 0; i < 4; i++) { // 开始想当前节点的四个方向左右上下去遍历
int nextx = curx + dir[i][0];
int nexty = cury + dir[i][1]; // 获取周边四个方向的坐标
if (nextx < 0 || nextx >= grid.size() || nexty < 0 || nexty >= grid[0].size()) continue; // 坐标越界了,直接跳过
if (!visited[nextx][nexty]) { // 如果节点没被访问过
que.push({nextx, nexty}); // 队列添加该节点为下一轮要遍历的节点
visited[nextx][nexty] = true; // 只要加入队列立刻标记,避免重复访问
}
}
}

}

总结

其实在二叉树章节的层序遍历 (opens new window)中,我们也讲过一次广搜,相当于是广搜在二叉树这种数据结构上的应用。这次则从图论的角度上再详细讲解一次广度优先遍历。


99. 岛屿数量

题目描述:

给定一个由 1(陆地)和 0(水)组成的矩阵,你需要计算岛屿的数量。岛屿由水平方向或垂直方向上相邻的陆地连接而成,并且四周都是水域。你可以假设矩阵外均被水包围。

输入描述:

第一行包含两个整数 N, M,表示矩阵的行数和列数。

后续 N 行,每行包含 M 个数字,数字为 1 或者 0。

输出描述:

输出一个整数,表示岛屿的数量。如果不存在岛屿,则输出 0。

输入示例:

1
2
3
4
5
4 5
1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 1

输出示例:

1
3

提示信息

img

根据测试案例中所展示,岛屿数量共有 3 个,所以输出 3。

数据范围:

  • 1 <= N, M <= 50

思路:

搜索每个岛屿上“1”的数量,然后取一个最大的。

本题思路,是用遇到一个没有遍历过的节点陆地,计数器就加一,然后把该节点陆地所能遍历到的陆地都标记上。

在遇到标记过的陆地节点和海洋节点的时候直接跳过。 这样计数器就是最终岛屿的数量。

那么如何把节点陆地所能遍历到的陆地都标记上呢,就可以使用 DFS,BFS或者并查集

深度优先搜索

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
// 版本一 
#include <iostream>
#include <vector>
using namespace std;

int dir[4][2] = {0, 1, 1, 0, -1, 0, 0, -1}; // 四个方向
void dfs(const vector<vector<int>>& grid, vector<vector<bool>>& visited, int x, int y) {
for (int i = 0; i < 4; i++) {
int nextx = x + dir[i][0];
int nexty = y + dir[i][1];
if (nextx < 0 || nextx >= grid.size() || nexty < 0 || nexty >= grid[0].size()) continue; // 越界了,直接跳过
if (!visited[nextx][nexty] && grid[nextx][nexty] == 1) { // 没有访问过的 同时 是陆地的

visited[nextx][nexty] = true;
dfs(grid, visited, nextx, nexty);
}
}
}

int main() {
int n, m;
cin >> n >> m;
vector<vector<int>> grid(n, vector<int>(m, 0));
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cin >> grid[i][j];
}
}

vector<vector<bool>> visited(n, vector<bool>(m, false));

int result = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (!visited[i][j] && grid[i][j] == 1) {
visited[i][j] = true;
result++; // 遇到没访问过的陆地,+1
dfs(grid, visited, i, j); // 将与其链接的陆地都标记上 true
}
}
}

cout << result << endl;
}

终止条件 就写在了 调用dfs的地方,如果遇到不合法的方向,直接不会去调用dfs


写法二,dfs处理当前节点,即在主函数遇到岛屿就计数为0,dfs处理接下来的全部陆地

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
// 版本二
#include <iostream>
#include <vector>
using namespace std;
int dir[4][2] = {0, 1, 1, 0, -1, 0, 0, -1}; // 四个方向
void dfs(const vector<vector<int>>& grid, vector<vector<bool>>& visited, int x, int y) {
if (visited[x][y] || grid[x][y] == 0) return; // 终止条件:访问过的节点 或者 遇到海水
visited[x][y] = true; // 标记访问过
for (int i = 0; i < 4; i++) {
int nextx = x + dir[i][0];
int nexty = y + dir[i][1];
if (nextx < 0 || nextx >= grid.size() || nexty < 0 || nexty >= grid[0].size()) continue; // 越界了,直接跳过
dfs(grid, visited, nextx, nexty);
}
}

int main() {
int n, m;
cin >> n >> m;
vector<vector<int>> grid(n, vector<int>(m, 0));
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cin >> grid[i][j];
}
}

vector<vector<bool>> visited(n, vector<bool>(m, false));

int result = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (!visited[i][j] && grid[i][j] == 1) {
result++; // 遇到没访问过的陆地,+1
dfs(grid, visited, i, j); // 将与其链接的陆地都标记上 true
}
}
}
cout << result << endl;
}

这里大家应该能看出区别了,无疑就是版本一中 调用dfs 的条件判断 放在了 版本二 的 终止条件位置上。

版本一的写法是 :下一个节点是否能合法已经判断完了,传进dfs函数的就是合法节点。

版本二的写法是:不管节点是否合法,上来就dfs,然后在终止条件的地方进行判断,不合法再return。

理论上来讲,版本一的效率更高一些,因为避免了 没有意义的递归调用,在调用dfs之前,就做合法性判断。 但从写法来说,可能版本二 更利于理解一些。(不过其实都差不太多)

很多同学看了同一道题目,都是dfs,写法却不一样,有时候有终止条件,有时候连终止条件都没有,其实这就是根本原因,两种写法而已


广度优先搜索

不少同学用广搜做这道题目的时候,超时了。 这里有一个广搜中很重要的细节:根本原因是只要 加入队列就代表 走过,就需要标记,而不是从队列拿出来的时候再去标记走过

很多同学可能感觉这有区别吗?

如果从队列拿出节点,再去标记这个节点走过,就会发生下图所示的结果,会导致很多节点重复加入队列。

图二

超时写法 (从队列中取出节点再标记,注意代码注释的地方)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
int dir[4][2] = {0, 1, 1, 0, -1, 0, 0, -1}; // 四个方向
void bfs(vector<vector<char>>& grid, vector<vector<bool>>& visited, int x, int y) {
queue<pair<int, int>> que;
que.push({x, y});
while(!que.empty()) {
pair<int ,int> cur = que.front(); que.pop();
int curx = cur.first;
int cury = cur.second;
visited[curx][cury] = true; // 从队列中取出在标记走过
for (int i = 0; i < 4; i++) {
int nextx = curx + dir[i][0];
int nexty = cury + dir[i][1];
if (nextx < 0 || nextx >= grid.size() || nexty < 0 || nexty >= grid[0].size()) continue; // 越界了,直接跳过
if (!visited[nextx][nexty] && grid[nextx][nexty] == '1') {
que.push({nextx, nexty});
}
}
}

}

加入队列 就代表走过,立刻标记,正确写法: (注意代码注释的地方)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
int dir[4][2] = {0, 1, 1, 0, -1, 0, 0, -1}; // 四个方向
void bfs(vector<vector<char>>& grid, vector<vector<bool>>& visited, int x, int y) {
queue<pair<int, int>> que;
que.push({x, y});
visited[x][y] = true; // 只要加入队列,立刻标记
while(!que.empty()) {
pair<int ,int> cur = que.front(); que.pop();
int curx = cur.first;
int cury = cur.second;
for (int i = 0; i < 4; i++) {
int nextx = curx + dir[i][0];
int nexty = cury + dir[i][1];
if (nextx < 0 || nextx >= grid.size() || nexty < 0 || nexty >= grid[0].size()) continue; // 越界了,直接跳过
if (!visited[nextx][nexty] && grid[nextx][nexty] == '1') {
que.push({nextx, nexty});
visited[nextx][nexty] = true; // 只要加入队列立刻标记
}
}
}

}

以上两个版本其实,其实只有细微区别,就是 visited[x][y] = true; 放在的地方,这取决于我们对 代码中队列的定义,队列中的节点就表示已经走过的节点。 所以只要加入队列,立即标记该节点走过

本题完整广搜代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#include <iostream>
#include <vector>
#include <queue>
using namespace std;

int dir[4][2] = {0, 1, 1, 0, -1, 0, 0, -1}; // 四个方向
void bfs(const vector<vector<int>>& grid, vector<vector<bool>>& visited, int x, int y) {
queue<pair<int, int>> que;
que.push({x, y});
visited[x][y] = true; // 只要加入队列,立刻标记
while(!que.empty()) {
pair<int ,int> cur = que.front(); que.pop();
int curx = cur.first;
int cury = cur.second;
for (int i = 0; i < 4; i++) {
int nextx = curx + dir[i][0];
int nexty = cury + dir[i][1];
if (nextx < 0 || nextx >= grid.size() || nexty < 0 || nexty >= grid[0].size()) continue; // 越界了,直接跳过
if (!visited[nextx][nexty] && grid[nextx][nexty] == 1) {
que.push({nextx, nexty});
visited[nextx][nexty] = true; // 只要加入队列立刻标记
}
}
}
}

int main() {
int n, m;
cin >> n >> m;
vector<vector<int>> grid(n, vector<int>(m, 0));
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cin >> grid[i][j];
}
}

vector<vector<bool>> visited(n, vector<bool>(m, false));

int result = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (!visited[i][j] && grid[i][j] == 1) {
result++; // 遇到没访问过的陆地,+1
bfs(grid, visited, i, j); // 将与其链接的陆地都标记上 true
}
}
}


cout << result << endl;
}

9/25

100. 岛屿的最大面积

题目描述

给定一个由 1(陆地)和 0(水)组成的矩阵,计算岛屿的最大面积。岛屿面积的计算方式为组成岛屿的陆地的总数。岛屿由水平方向或垂直方向上相邻的陆地连接而成,并且四周都是水域。你可以假设矩阵外均被水包围。

输入描述

第一行包含两个整数 N, M,表示矩阵的行数和列数。后续 N 行,每行包含 M 个数字,数字为 1 或者 0,表示岛屿的单元格。

输出描述

输出一个整数,表示岛屿的最大面积。如果不存在岛屿,则输出 0。

输入示例

1
2
3
4
5
4 5
1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 1
输出示例
1
4
提示信息

img

样例输入中,岛屿的最大面积为 4。

数据范围:

1 <= M, N <= 50。

思路:

搜索每个岛屿上“1”的数量,然后取一个最大的。

代码:

DFS:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
// 版本一
#include <iostream>
#include <vector>
using namespace std;
int count;
int dir[4][2] = {0, 1, 1, 0, -1, 0, 0, -1}; // 四个方向
void dfs(vector<vector<int>>& grid, vector<vector<bool>>& visited, int x, int y) {
for (int i = 0; i < 4; i++) {
int nextx = x + dir[i][0];
int nexty = y + dir[i][1];
if (nextx < 0 || nextx >= grid.size() || nexty < 0 || nexty >= grid[0].size()) continue; // 越界了,直接跳过
if (!visited[nextx][nexty] && grid[nextx][nexty] == 1) { // 没有访问过的 同时 是陆地的
visited[nextx][nexty] = true;
count++;
dfs(grid, visited, nextx, nexty);
}
}
}

int main() {
int n, m;
cin >> n >> m;
vector<vector<int>> grid(n, vector<int>(m, 0));
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cin >> grid[i][j];
}
}
vector<vector<bool>> visited(n, vector<bool>(m, false));
int result = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (!visited[i][j] && grid[i][j] == 1) {
count = 1; // 因为dfs处理下一个节点,所以这里遇到陆地了就先计数,dfs处理接下来的相邻陆地
visited[i][j] = true;
dfs(grid, visited, i, j); // 将与其链接的陆地都标记上 true
result = max(result, count);
}
}
}
cout << result << endl;

}

BFS:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#include <iostream>
#include <vector>
#include <queue>
using namespace std;

int dir[4][2] = {0 , 1 , 1 , 0 , 0 , -1 , -1 , 0};
int cnt = 0;

void bfs(const vector<vector<int>>& grid , vector<vector<bool>>& visited , int x , int y){
queue<pair<int , int>> que;
que.push({x , y});
visited[x][y] = true;// 加入队列就意味节点是陆地可到达的点
cnt ++;
while(!que.empty()){
pair<int , int> cur = que.front();
que.pop();
int curx = cur.first;
int cury = cur.second;
for (int i = 0; i < 4; i++) {
int nextx = curx + dir[i][0];
int nexty = cury + dir[i][1];
if(nextx < 0 || nextx >= grid.size() || nexty < 0 || nexty >= grid[0].size()) continue;//越界判定
// 节点没有被访问过且是陆地
if(!visited[nextx][nexty] && grid[nextx][nexty] == 1){
visited[nextx][nexty] = true;
cnt ++;
que.push({nextx , nexty});
}
}
}
}

int main(){
int n , m ;
cin >> n >> m;
vector<vector<int>> grid(n , vector<int>(m , 0));
for (int i = 0; i < n; i++) {
for(int j = 0 ; j < m ; j++){
cin >> grid[i][j];
}
}

vector<vector<bool>> visited(n , vector<bool>(m , false));

int res = 0;
for (int i = 0; i < n; i++) {
for(int j = 0 ; j < m ; j++){
if(!visited[i][j] && grid[i][j] == 1){
cnt = 0;
bfs(grid , visited , i , j);// 将与其链接的陆地都标记上 true
res = max(res , cnt);
}
}
}

cout << res << endl;
}

101. 孤岛的总面积

题目描述

给定一个由 1(陆地)和 0(水)组成的矩阵,岛屿指的是由水平或垂直方向上相邻的陆地单元格组成的区域,且完全被水域单元格包围。孤岛是那些位于矩阵内部、所有单元格都不接触边缘的岛屿。

现在你需要计算所有孤岛的总面积,岛屿面积的计算方式为组成岛屿的陆地的总数。

输入描述

第一行包含两个整数 N, M,表示矩阵的行数和列数。之后 N 行,每行包含 M 个数字,数字为 1 或者 0。

输出描述

输出一个整数,表示所有孤岛的总面积,如果不存在孤岛,则输出 0。

输入示例
1
2
3
4
5
4 5
1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 1
输出示例
1
1
提示信息

img

在矩阵中心部分的岛屿,因为没有任何一个单元格接触到矩阵边缘,所以该岛屿属于孤岛,总面积为 1。

数据范围:

1 <= M, N <= 50。


思路:

本题要求找到不靠边的陆地面积,那么我们只要从周边找到陆地然后 通过 dfs或者bfs 将周边靠陆地且相邻的陆地都变成海洋,然后再去重新遍历地图 统计此时还剩下的陆地就可以了。

如图,在遍历地图周围四个边,靠地图四边的陆地,都为绿色,

img

在遇到地图周边陆地的时候,将1都变为0,此时地图为这样:

img

然后我们再去遍历这个地图,遇到有陆地的地方,去采用深搜或者广搜,边统计所有陆地。

DFS:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#include <iostream>
#include <vector>
using namespace std;
int dir[4][2] = {-1, 0, 0, -1, 1, 0, 0, 1}; // 保存四个方向
int count; // 统计符合题目要求的陆地空格数量
void dfs(vector<vector<int>>& grid, int x, int y) {
grid[x][y] = 0;
count++;
for (int i = 0; i < 4; i++) { // 向四个方向遍历
int nextx = x + dir[i][0];
int nexty = y + dir[i][1];
// 超过边界
if (nextx < 0 || nextx >= grid.size() || nexty < 0 || nexty >= grid[0].size()) continue;
// 不符合条件,不继续遍历
if (grid[nextx][nexty] == 0) continue;

dfs (grid, nextx, nexty);
}
return;
}

int main() {
int n, m;
cin >> n >> m;
vector<vector<int>> grid(n, vector<int>(m, 0));
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cin >> grid[i][j];
}
}

// 从左侧边,和右侧边 向中间遍历
for (int i = 0; i < n; i++) {
if (grid[i][0] == 1) dfs(grid, i, 0);
if (grid[i][m - 1] == 1) dfs(grid, i, m - 1);
}
// 从上边和下边 向中间遍历
for (int j = 0; j < m; j++) {
if (grid[0][j] == 1) dfs(grid, 0, j);
if (grid[n - 1][j] == 1) dfs(grid, n - 1, j);
}
count = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grid[i][j] == 1) dfs(grid, i, j);
}
}
cout << count << endl;
}

采用广度优先搜索的代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#include <iostream>
#include <vector>
#include <queue>
using namespace std;

int count = 0;
int dir[4][2] = {0, 1, 1, 0, -1, 0, 0, -1}; // 四个方向

void bfs(vector<vector<int>>& grid, int x, int y) {
queue<pair<int, int>> que;
que.push({x, y});
grid[x][y] = 0; // 只要加入队列,立刻标记
count++;
while(!que.empty()) {
pair<int ,int> cur = que.front(); que.pop();
int curx = cur.first;
int cury = cur.second;
for (int i = 0; i < 4; i++) {
int nextx = curx + dir[i][0];
int nexty = cury + dir[i][1];
if (nextx < 0 || nextx >= grid.size() || nexty < 0 || nexty >= grid[0].size()) continue; // 越界了,直接跳过
if (grid[nextx][nexty] == 1) {
que.push({nextx, nexty});
count++;
grid[nextx][nexty] = 0; // 只要加入队列立刻标记
}
}
}
}

int main() {
int n, m;
cin >> n >> m;
vector<vector<int>> grid(n, vector<int>(m, 0));
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cin >> grid[i][j];
}
}
// 从左侧边,和右侧边 向中间遍历
for (int i = 0; i < n; i++) {
if (grid[i][0] == 1) bfs(grid, i, 0);
if (grid[i][m - 1] == 1) bfs(grid, i, m - 1);
}
// 从上边和下边 向中间遍历
for (int j = 0; j < m; j++) {
if (grid[0][j] == 1) bfs(grid, 0, j);
if (grid[n - 1][j] == 1) bfs(grid, n - 1, j);
}
count = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grid[i][j] == 1) bfs(grid, i, j);
}
}

cout << count << endl;
}

102. 沉没孤岛

题目描述

给定一个由 1(陆地)和 0(水)组成的矩阵,岛屿指的是由水平或垂直方向上相邻的陆地单元格组成的区域,且完全被水域单元格包围。孤岛是那些位于矩阵内部、所有单元格都不接触边缘的岛屿。

现在你需要将所有孤岛“沉没”,即将孤岛中的所有陆地单元格(1)转变为水域单元格(0)。

输入描述

第一行包含两个整数 N, M,表示矩阵的行数和列数。

之后 N 行,每行包含 M 个数字,数字为 1 或者 0,表示岛屿的单元格。

输出描述

输出将孤岛“沉没”之后的岛屿矩阵。 注意:每个元素后面都有一个空格

输入示例
1
2
3
4
5
4 5
1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 1
输出示例
1
2
3
4
1 1 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 1 1
提示信息

img

将孤岛沉没。

img

数据范围:

1 <= M, N <= 50。


这道题目和0101.孤岛的总面积 (opens new window)正好反过来了,0101.孤岛的总面积 (opens new window)是求 地图中间的空格数,而本题是要把地图中间的 1 都改成 0 。

那么两题在思路上也是差不多的。

思路依然是从地图周边出发,将周边空格相邻的陆地都做上标记,然后在遍历一遍地图,遇到 陆地 且没做过标记的,那么都是地图中间的 陆地 ,全部改成水域就行。

有的录友可能想,我在定义一个 visited二维数组,单独标记周边的陆地,然后遍历地图的时候同时对 数组board和 数组visited进行判断,决定 陆地是否变成水域。

这样做其实就有点麻烦了,不用额外定义空间了,标记周边的陆地,可以直接改陆地为其他特殊值作为标记。

步骤一:深搜或者广搜将地图周边的 1 (陆地)全部改成 2 (特殊标记)

步骤二:将水域中间 1 (陆地)全部改成 水域(0)

步骤三:将之前标记的 2 改为 1 (陆地)

如图:

img

整体C++代码如下,以下使用dfs实现,其实遍历方式dfs,bfs都是可以的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#include <iostream>
#include <vector>
using namespace std;
int dir[4][2] = {-1, 0, 0, -1, 1, 0, 0, 1}; // 保存四个方向
void dfs(vector<vector<int>>& grid, int x, int y) {
grid[x][y] = 2;
for (int i = 0; i < 4; i++) { // 向四个方向遍历
int nextx = x + dir[i][0];
int nexty = y + dir[i][1];
// 超过边界
if (nextx < 0 || nextx >= grid.size() || nexty < 0 || nexty >= grid[0].size()) continue;
// 不符合条件,不继续遍历
if (grid[nextx][nexty] == 0 || grid[nextx][nexty] == 2) continue;
dfs (grid, nextx, nexty);
}
return;
}

int main() {
int n, m;
cin >> n >> m;
vector<vector<int>> grid(n, vector<int>(m, 0));
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cin >> grid[i][j];
}
}

// 步骤一:
// 从左侧边,和右侧边 向中间遍历
for (int i = 0; i < n; i++) {
if (grid[i][0] == 1) dfs(grid, i, 0);
if (grid[i][m - 1] == 1) dfs(grid, i, m - 1);
}

// 从上边和下边 向中间遍历
for (int j = 0; j < m; j++) {
if (grid[0][j] == 1) dfs(grid, 0, j);
if (grid[n - 1][j] == 1) dfs(grid, n - 1, j);
}
// 步骤二、步骤三
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grid[i][j] == 1) grid[i][j] = 0;
if (grid[i][j] == 2) grid[i][j] = 1;
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cout << grid[i][j] << " ";
}
cout << endl;
}
}

9/26

103. 水流问题

题目描述

现有一个 N × M 的矩阵,每个单元格包含一个数值,这个数值代表该位置的相对高度。矩阵的左边界和上边界被认为是第一组边界,而矩阵的右边界和下边界被视为第二组边界。

矩阵模拟了一个地形,当雨水落在上面时,水会根据地形的倾斜向低处流动,但只能从较高或等高的地点流向较低或等高并且相邻(上下左右方向)的地点。我们的目标是确定那些单元格,从这些单元格出发的水可以达到第一组边界和第二组边界。

输入描述

第一行包含两个整数 N 和 M,分别表示矩阵的行数和列数。

后续 N 行,每行包含 M 个整数,表示矩阵中的每个单元格的高度。

输出描述

输出共有多行,每行输出两个整数,用一个空格隔开,表示可达第一组边界和第二组边界的单元格的坐标,输出顺序任意。

输入示例
1
2
3
4
5
6
5 5
1 3 1 2 4
1 2 1 3 2
2 4 7 2 1
4 5 6 1 1
1 4 1 2 1
输出示例
1
2
3
4
5
6
7
8
0 4
1 3
2 2
3 0
3 1
3 2
4 0
4 1
提示信息

img

图中的蓝色方块上的雨水既能流向第一组边界,也能流向第二组边界。所以最终答案为所有蓝色方块的坐标。

数据范围:

1 <= M, N <= 100。


思路:

一个比较直白的想法,其实就是 遍历每个点,然后看这个点 能不能同时到达第一组边界和第二组边界。但是超时了。

dfs写法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#include <iostream>
#include <vector>
using namespace std;
int n, m;
int dir[4][2] = {-1, 0, 0, -1, 1, 0, 0, 1};

// 从 x,y 出发 把可以走的地方都标记上
void dfs(vector<vector<int>>& grid, vector<vector<bool>>& visited, int x, int y) {
if (visited[x][y]) return;

visited[x][y] = true;

for (int i = 0; i < 4; i++) {
int nextx = x + dir[i][0];
int nexty = y + dir[i][1];
if (nextx < 0 || nextx >= n || nexty < 0 || nexty >= m) continue;
if (grid[x][y] < grid[nextx][nexty]) continue; // 高度不合适

dfs (grid, visited, nextx, nexty);
}
return;
}
bool isResult(vector<vector<int>>& grid, int x, int y) {
vector<vector<bool>> visited(n, vector<bool>(m, false));

// 深搜,将x,y出发 能到的节点都标记上。
dfs(grid, visited, x, y);
bool isFirst = false;
bool isSecond = false;

// 以下就是判断x,y出发,是否到达第一组边界和第二组边界
// 第一边界的上边
for (int j = 0; j < m; j++) {
if (visited[0][j]) {
isFirst = true;
break;
}
}
// 第一边界的左边
for (int i = 0; i < n; i++) {
if (visited[i][0]) {
isFirst = true;
break;
}
}
// 第二边界下边
for (int j = 0; j < m; j++) {
if (visited[n - 1][j]) {
isSecond = true;
break;
}
}
// 第二边界右边
for (int i = 0; i < n; i++) {
if (visited[i][m - 1]) {
isSecond = true;
break;
}
}
if (isFirst && isSecond) return true;
return false;
}


int main() {
cin >> n >> m;
vector<vector<int>> grid(n, vector<int>(m, 0));
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cin >> grid[i][j];
}
}
// 遍历每一个点,看是否能同时到达第一组边界和第二组边界
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (isResult(grid, i, j)) {
cout << i << " " << j << endl;
}
}
}
}

image-20240926191439028

遍历每一个节点,是 m n,遍历每一个节点的时候,都要做深搜,深搜的时间复杂度是: $m n$。那么整体时间复杂度 就是$ O(m^2 * n^2)$ ,这是一个四次方的时间复杂度。


优化:

那么我们可以 反过来想,从第一组边界上的节点 逆流而上,将遍历过的节点都标记上。

同样从第二组边界的边上节点 逆流而上,将遍历过的节点也标记上。

然后两方都标记过的节点就是既可以流太平洋也可以流大西洋的节点

从第一组边界边上节点出发,如图:

img

从第二组边界上节点出发,如图:

img

按照这样的逻辑,就可以写出如下遍历代码:(详细注释)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#include <iostream>
#include <vector>
using namespace std;
int n, m;
int dir[4][2] = {-1, 0, 0, -1, 1, 0, 0, 1};
void dfs(vector<vector<int>>& grid, vector<vector<bool>>& visited, int x, int y) {
if (visited[x][y]) return;

visited[x][y] = true;

for (int i = 0; i < 4; i++) {
int nextx = x + dir[i][0];
int nexty = y + dir[i][1];
if (nextx < 0 || nextx >= n || nexty < 0 || nexty >= m) continue;
if (grid[x][y] > grid[nextx][nexty]) continue; // 注意:这里是从低向高遍历

dfs (grid, visited, nextx, nexty);
}
return;
}

int main() {

cin >> n >> m;
vector<vector<int>> grid(n, vector<int>(m, 0));

for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cin >> grid[i][j];
}
}
// 标记从第一组边界上的节点出发,可以遍历的节点
vector<vector<bool>> firstBorder(n, vector<bool>(m, false));

// 标记从第一组边界上的节点出发,可以遍历的节点
vector<vector<bool>> secondBorder(n, vector<bool>(m, false));

// 从最上和最下行的节点出发,向高处遍历
for (int i = 0; i < n; i++) {
dfs (grid, firstBorder, i, 0); // 遍历最左列,接触第一组边界
dfs (grid, secondBorder, i, m - 1); // 遍历最右列,接触第二组边界
}

// 从最左和最右列的节点出发,向高处遍历
for (int j = 0; j < m; j++) {
dfs (grid, firstBorder, 0, j); // 遍历最上行,接触第一组边界
dfs (grid, secondBorder, n - 1, j); // 遍历最下行,接触第二组边界
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
// 如果这个节点,从第一组边界和第二组边界出发都遍历过,就是结果
if (firstBorder[i][j] && secondBorder[i][j]) cout << i << " " << j << endl;;
}
}
}

时间复杂度分析, 关于dfs函数搜索的过程 时间复杂度是 $O(n * m)$,这个大家比较容易想。

关键看主函数,那么每次dfs的时候,上面还是有for循环的。

第一个for循环,时间复杂度是:$n (n m) $。

第二个for循环,时间复杂度是:$m (n m)$。

所以本题看起来 时间复杂度好像是 : n (n m) + m (n m) = (m n) (m + n) 。

其实这是一个误区,大家再自己看 dfs函数的实现,其实 有visited函数记录 走过的节点,而走过的节点是不会再走第二次的。

所以 调用dfs函数,只要参数传入的是 数组 firstBorder,那么地图中 每一个节点其实就遍历一次,无论你调用多少次

同理,调用dfs函数,只要 参数传入的是 数组 secondBorder,地图中每个节点也只会遍历一次。

所以,以下这段代码的时间复杂度是 $2 n m$。 地图用每个节点就遍历了两次,参数传入 firstBorder 的时候遍历一次,参数传入 secondBorder 的时候遍历一次。

1
2
3
4
5
6
7
8
9
10
11
// 从最上和最下行的节点出发,向高处遍历
for (int i = 0; i < n; i++) {
dfs (grid, firstBorder, i, 0); // 遍历最左列,接触第一组边界
dfs (grid, secondBorder, i, m - 1); // 遍历最右列,接触第二组边界
}

// 从最左和最右列的节点出发,向高处遍历
for (int j = 0; j < m; j++) {
dfs (grid, firstBorder, 0, j); // 遍历最上行,接触第一组边界
dfs (grid, secondBorder, n - 1, j); // 遍历最下行,接触第二组边界
}

那么本题整体的时间复杂度其实是:$ 2 n m + n m $,所以最终时间复杂度为 $O(n m)$ 。

空间复杂度为:$O(n m)$ 这个就不难理解了。开了几个 n m 的数组。


104.建造最大岛屿

题目描述

给定一个由 1(陆地)和 0(水)组成的矩阵,你最多可以将矩阵中的一格水变为一块陆地,在执行了此操作之后,矩阵中最大的岛屿面积是多少。

岛屿面积的计算方式为组成岛屿的陆地的总数。岛屿是被水包围,并且通过水平方向或垂直方向上相邻的陆地连接而成的。你可以假设矩阵外均被水包围。

输入描述

第一行包含两个整数 N, M,表示矩阵的行数和列数。之后 N 行,每行包含 M 个数字,数字为 1 或者 0,表示岛屿的单元格。

输出描述

输出一个整数,表示最大的岛屿面积。

输入示例
1
2
3
4
5
4 5
1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 1
输出示例
1
6
提示信息

img

对于上面的案例,有两个位置可将 0 变成 1,使得岛屿的面积最大,即 6。

img

数据范围:

1 <= M, N <= 50。


思路:

本题的一个暴力想法,应该是遍历地图尝试 将每一个 0 改成1,然后去搜索地图中的最大的岛屿面积。计算地图的最大面积:遍历地图 + 深搜岛屿,时间复杂度为 $n * n$。

(其实使用深搜还是广搜都是可以的,其目的就是遍历岛屿做一个标记,相当于染色,那么使用哪个遍历方式都行,以下我用深搜来讲解)

每改变一个0的方格,都需要重新计算一个地图的最大面积,所以 整体时间复杂度为:$n^4$。

优化思路

其实每次深搜遍历计算最大岛屿面积,我们都做了很多重复的工作。

只要用一次深搜把每个岛屿的面积记录下来就好。

第一步:一次遍历地图,得出各个岛屿的面积,并做编号记录。可以使用map记录,key为岛屿编号,value为岛屿面积

第二步:再遍历地图,遍历0的方格(因为要将0变成1),并统计该1(由0变成的1)周边岛屿面积,将其相邻面积相加在一起,遍历所有 0 之后,就可以得出 选一个0变成1 之后的最大面积。

拿如下地图的岛屿情况来举例: (1为陆地)

img

第一步,则遍历题目,并将岛屿到编号和面积上的统计,过程如图所示:

img

本过程代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
int dir[4][2] = {0, 1, 1, 0, -1, 0, 0, -1}; // 四个方向
void dfs(vector<vector<int>>& grid, vector<vector<bool>>& visited, int x, int y, int mark) {
if (visited[x][y] || grid[x][y] == 0) return; // 终止条件:访问过的节点 或者 遇到海水
visited[x][y] = true; // 标记访问过
grid[x][y] = mark; // 给陆地标记新标签,由于grid[x][y] = 1 表示陆地,故mark从2开始
count++;
for (int i = 0; i < 4; i++) {
int nextx = x + dir[i][0];
int nexty = y + dir[i][1];
if (nextx < 0 || nextx >= grid.size() || nexty < 0 || nexty >= grid[0].size()) continue; // 越界了,直接跳过
dfs(grid, visited, nextx, nexty, mark);
}
}

int largestIsland(vector<vector<int>>& grid) {
int n = grid.size(), m = grid[0].size();
vector<vector<bool>> visited = vector<vector<bool>>(n, vector<bool>(m, false)); // 标记访问过的点
unordered_map<int ,int> gridNum;
int mark = 2; // 记录每个岛屿的编号
bool isAllGrid = true; // 标记是否整个地图都是陆地
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grid[i][j] == 0) isAllGrid = false;
if (!visited[i][j] && grid[i][j] == 1) {
count = 0;
dfs(grid, visited, i, j, mark); // 将与其链接的陆地都标记上 true
gridNum[mark] = count; // 记录每一个岛屿的面积
mark++; // 记录下一个岛屿编号
}
}
}
}

这个过程时间复杂度$ n n$ 。可能有录友想:分明是两个for循环下面套这一个dfs,时间复杂度怎么会是$ n n$呢?

其实大家可以仔细看一下代码,$n * n$这个方格地图中,每个节点我们就遍历一次,并不会重复遍历

第二步过程如图所示:

img

也就是遍历每一个0的方格,并统计其相邻岛屿面积,最后取一个最大值。

这个过程的时间复杂度也为 $n * n$。

所以整个解法的时间复杂度,为 $n n + n n$ 也就是 $n^2$。

当然这里还有一个优化的点,就是 可以不用 visited数组,因为有mark来标记,所以遍历过的$grid [i][ j ]$是不等于1的(即代码中的grid[x] [y] != 1)。

代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
int dir[4][2] = {0, 1, 1, 0, -1, 0, 0, -1}; // 四个方向
void dfs(vector<vector<int>>& grid, int x, int y, int mark) {
if (grid[x][y] != 1 || grid[x][y] == 0) return; // 终止条件:访问过的节点 或者 遇到海水
grid[x][y] = mark; // 给陆地标记新标签
count++;
for (int i = 0; i < 4; i++) {
int nextx = x + dir[i][0];
int nexty = y + dir[i][1];
if (nextx < 0 || nextx >= n || nexty < 0 || nexty >= m) continue; // 越界了,直接跳过
dfs(grid, nextx, nexty, mark);
}
}

int main() {
cin >> n >> m;
vector<vector<int>> grid(n, vector<int>(m, 0));

for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cin >> grid[i][j];
}
}
unordered_map<int ,int> gridNum;
int mark = 2; // 记录每个岛屿的编号
bool isAllGrid = true; // 标记是否整个地图都是陆地
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grid[i][j] == 0) isAllGrid = false;
if (grid[i][j] == 1) {
count = 0;
dfs(grid, i, j, mark); // 将与其链接的陆地都标记上 true
gridNum[mark] = count; // 记录每一个岛屿的面积
mark++; // 记录下一个岛屿编号
}
}
}

不过为了让各个变量各司其事,代码清晰一些,完整代码还是使用visited数组来标记。

最后,整体代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#include <iostream>
#include <vector>
#include <unordered_set>
#include <unordered_map>
using namespace std;
int n, m;
int count;

int dir[4][2] = {0, 1, 1, 0, -1, 0, 0, -1}; // 四个方向
void dfs(vector<vector<int>>& grid, vector<vector<bool>>& visited, int x, int y, int mark) {
if (visited[x][y] || grid[x][y] == 0) return; // 终止条件:访问过的节点 或者 遇到海水
visited[x][y] = true; // 标记访问过
grid[x][y] = mark; // 给陆地标记新标签
count++;
for (int i = 0; i < 4; i++) {
int nextx = x + dir[i][0];
int nexty = y + dir[i][1];
if (nextx < 0 || nextx >= n || nexty < 0 || nexty >= m) continue; // 越界了,直接跳过
dfs(grid, visited, nextx, nexty, mark);
}
}

int main() {
cin >> n >> m;
vector<vector<int>> grid(n, vector<int>(m, 0));

for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cin >> grid[i][j];
}
}
vector<vector<bool>> visited(n, vector<bool>(m, false)); // 标记访问过的点
unordered_map<int ,int> gridNum;
int mark = 2; // 记录每个岛屿的编号
bool isAllGrid = true; // 标记是否整个地图都是陆地
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grid[i][j] == 0) isAllGrid = false;
if (!visited[i][j] && grid[i][j] == 1) {
count = 0;
dfs(grid, visited, i, j, mark); // 将与其链接的陆地都标记上 true
gridNum[mark] = count; // 记录每一个岛屿的面积
mark++; // 记录下一个岛屿编号
}
}
}
if (isAllGrid) {
cout << n * m << endl; // 如果都是陆地,返回全面积
return 0; // 结束程序
}

// 以下逻辑是根据添加陆地的位置,计算周边岛屿面积之和
int result = 0; // 记录最后结果
unordered_set<int> visitedGrid; // 标记访问过的岛屿
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
count = 1; // 记录连接之后的岛屿数量
visitedGrid.clear(); // 每次使用时,清空
if (grid[i][j] == 0) {
for (int k = 0; k < 4; k++) {
int neari = i + dir[k][1]; // 计算相邻坐标
int nearj = j + dir[k][0];
if (neari < 0 || neari >= n || nearj < 0 || nearj >= m) continue;
if (visitedGrid.count(grid[neari][nearj])) continue; // 添加过的岛屿不要重复添加
// 把相邻四面的岛屿数量加起来
count += gridNum[grid[neari][nearj]];
visitedGrid.insert(grid[neari][nearj]); // 标记该岛屿已经添加过
}
}
result = max(result, count);
}
}
cout << result << endl;

}

9/27

110. 字符串接龙

题目描述

字典 strList 中从字符串 beginStr 和 endStr 的转换序列是一个按下述规格形成的序列:

  1. 序列中第一个字符串是 beginStr。
  2. 序列中最后一个字符串是 endStr。
  3. 每次转换只能改变一个字符。
  4. 转换过程中的中间字符串必须是字典 strList 中的字符串,且strList里的每个字符串只用使用一次。

给你两个字符串 beginStr 和 endStr 和一个字典 strList,找到从 beginStr 到 endStr 的最短转换序列中的字符串数目。如果不存在这样的转换序列,返回 0。

输入描述

第一行包含一个整数 N,表示字典 strList 中的字符串数量。 第二行包含两个字符串,用空格隔开,分别代表 beginStr 和 endStr。 后续 N 行,每行一个字符串,代表 strList 中的字符串。

输出描述

输出一个整数,代表从 beginStr 转换到 endStr 需要的最短转换序列中的字符串数量。如果不存在这样的转换序列,则输出 0。

输入示例
1
2
3
4
5
6
7
8
6
abc def
efc
dbc
ebc
dec
dfc
yhn
输出示例
1
4
提示信息

从 startStr 到 endStr,在 strList 中最短的路径为 abc -> dbc -> dec -> def,所以输出结果为 4,如图:

img

数据范围:

2 <= N <= 500


思路:

以示例1为例,从这个图中可以看出 abc 到 def的路线 不止一条,但最短的一条路径上是4个节点。

img

本题只需要求出最短路径的长度就可以了,不用找出具体路径。

所以这道题要解决两个问题:

  • 图中的线是如何连在一起的
  • 起点和终点的最短路径长度

首先题目中并没有给出点与点之间的连线,而是要我们自己去连,条件是字符只能差一个

所以判断点与点之间的关系,需要判断是不是差一个字符,如果差一个字符,那就是有链接

然后就是求起点和终点的最短路径长度,这里无向图求最短路,广搜最为合适,广搜只要搜到了终点,那么一定是最短的路径。因为广搜就是以起点中心向四周扩散的搜索。

本题如果用深搜,会比较麻烦,要在到达终点的不同路径中选则一条最短路。 而广搜只要达到终点,一定是最短路。

另外需要有一个注意点:

  • 本题是一个无向图,需要用标记位,标记着节点是否走过,否则就会死循环!
  • 使用set来检查字符串是否出现在字符串集合里更快一些

C++代码如下:(详细注释)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#include <iostream>
#include <vector>
#include <string>
#include <unordered_set>
#include <unordered_map>
#include <queue>
using namespace std;
int main() {
string beginStr, endStr, str;
int n;
cin >> n;
unordered_set<string> strSet;
cin >> beginStr >> endStr;
for (int i = 0; i < n; i++) {
cin >> str;
strSet.insert(str);
}

// 记录strSet里的字符串是否被访问过,同时记录路径长度
unordered_map<string, int> visitMap; // <记录的字符串,路径长度>

// 初始化队列
queue<string> que;
que.push(beginStr);

// 初始化visitMap
visitMap.insert(pair<string, int>(beginStr, 1));

while(!que.empty()) {
string word = que.front();
que.pop();
int path = visitMap[word]; // 这个字符串在路径中的长度

// 开始在这个str中,挨个字符去替换
for (int i = 0; i < word.size(); i++) {
string newWord = word; // 用一个新字符串替换str,因为每次要置换一个字符

// 遍历26的字母
for (int j = 0 ; j < 26; j++) {
newWord[i] = j + 'a';
if (newWord == endStr) { // 发现替换字母后,字符串与终点字符串相同
cout << path + 1 << endl; // 找到了路径
return 0;
}
// 字符串集合里出现了newWord,并且newWord没有被访问过
if (strSet.find(newWord) != strSet.end()
&& visitMap.find(newWord) == visitMap.end()) {
// 添加访问信息,并将新字符串放到队列中
visitMap.insert(pair<string, int>(newWord, path + 1));
que.push(newWord);
}
}
}
}

// 没找到输出0
cout << 0 << endl;

}

当然本题也可以用双向BFS,就是从头尾两端进行搜索。


105.有向图的完全可达性

题目描述

给定一个有向图,包含 N 个节点,节点编号分别为 1,2,…,N。现从 1 号节点开始,如果可以从 1 号节点的边可以到达任何节点,则输出 1,否则输出 -1。

输入描述

第一行包含两个正整数,表示节点数量 N 和边的数量 K。 后续 K 行,每行两个正整数 s 和 t,表示从 s 节点有一条边单向连接到 t 节点。

输出描述

如果可以从 1 号节点的边可以到达任何节点,则输出 1,否则输出 -1。

输入示例
1
2
3
4
5
4 4
1 2
2 1
1 3
2 4
输出示例
1
1
提示信息

img

从 1 号节点可以到达任意节点,输出 1。

数据范围:

1 <= N <= 100;
1 <= K <= 2000。


思路:

本题给我们是一个有向图, 意识到这是有向图很重要!

接下来我们再画一个图,从图里可以直观看出来,节点6 是 不能到达节点1 的

img

这就很容易让我们想起岛屿问题,只要发现独立的岛,就是不可到达的

但本题是有向图,在有向图中,即使所有节点都是链接的,但依然不可能从0出发遍历所有边。

例如上图中,节点1 可以到达节点2,但节点2是不能到达节点1的。

所以本题是一个有向图搜索全路径的问题。 只能用深搜(DFS)或者广搜(BFS)来搜。

以下dfs分析 大家一定要仔细看,本题有两种dfs的解法,很多题解没有讲清楚。 看完之后 相信你对dfs会有更深的理解。

深搜三部曲:

  1. 确认递归函数,参数

需要传入地图,需要知道当前我们拿到的key,以至于去下一个房间。

同时还需要一个数组,用来记录我们都走过了哪些房间,这样好知道最后有没有把所有房间都遍历的,可以定义一个一维数组。

所以 递归函数参数如下:

1
2
3
// key 当前得到的可以 
// visited 记录访问过的房间
void dfs(const vector<list<int>>& graph, int key, vector<bool>& visited) {
  1. 确认终止条件

遍历的时候,什么时候终止呢?

这里有一个很重要的逻辑,就是在递归中,我们是处理当前访问的节点,还是处理下一个要访问的节点。这决定 终止条件怎么写。

首先明确,本题中什么叫做处理,就是 visited 数组来记录访问过的节点,该节点默认数组里元素都是false,把元素标记为true就是处理 本节点了。

如果我们是处理当前访问的节点,当前访问的节点如果是 true ,说明是访问过的节点,那就终止本层递归;如果不是true,我们就把它赋值为true,因为这是我们处理本层递归的节点。

代码就是这样:

1
2
3
4
5
6
7
8
9
10
11
12
// 写法一:处理当前访问的节点
void dfs(const vector<list<int>>& graph, int key, vector<bool>& visited) {
if (visited[key]) {
return;
}
visited[key] = true;
list<int> keys = graph[key];
for (int key : keys) {
// 深度优先搜索遍历
dfs(graph, key, visited);
}
}

如果我们是处理下一层访问的节点,而不是当前层。那么就要在 深搜三部曲中第三步:处理目前搜索节点出发的路径的时候对 节点进行处理。

这样的话,就不需要终止条件,而是在 搜索下一个节点的时候,直接判断 下一个节点是否是我们要搜的节点。

代码就是这样的:

1
2
3
4
5
6
7
8
9
10
// 写法二:处理下一个要访问的节点
void dfs(const vector<list<int>>& graph, int key, vector<bool>& visited) {
list<int> keys = graph[key];
for (int key : keys) {
if (visited[key] == false) { // 确认下一个是没访问过的节点
visited[key] = true;
dfs(graph, key, visited);
}
}
}

可以看出,如何看待 我们要访问的节点,直接决定了两种不一样的写法,很多录友对这一块很模糊,可能做过这道题,但没有思考到这个维度上。

  1. 处理目前搜索节点出发的路径

其实在上面,深搜三部曲 第二部,就已经讲了,因为终止条件的两种写法, 直接决定了两种不一样的递归写法。

这里还有细节:看上面两个版本的写法中, 好像没有发现回溯的逻辑

我们都知道,有递归就有回溯,回溯就在递归函数的下面, 那么之前我们做的dfs题目,都需要回溯操作,例如:0098.所有可达路径为什么本题就没有回溯呢?

代码中可以看到dfs函数下面并没有回溯的操作。

此时就要在思考本题的要求了,本题是需要判断 1节点 是否能到所有节点,那么我们就没有必要回溯去撤销操作了,只要遍历过的节点一律都标记上。

那什么时候需要回溯操作呢?

当我们需要搜索一条可行路径的时候,就需要回溯操作了,因为没有回溯,就没法“调头”, 如果不理解的话,去看我写的 0098.所有可达路径 的题解。

DFS整体实现C++代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
// 写法一:dfs 处理当前访问的节点
#include <iostream>
#include <vector>
#include <list>
using namespace std;

void dfs(const vector<list<int>>& graph, int key, vector<bool>& visited) {
if (visited[key]) {
return;
}
visited[key] = true;
list<int> keys = graph[key];
for (int key : keys) {
// 深度优先搜索遍历
dfs(graph, key, visited);
}
}

int main() {
int n, m, s, t;
cin >> n >> m;

// 节点编号从1到n,所以申请 n+1 这么大的数组
vector<list<int>> graph(n + 1); // 邻接表
while (m--) {
cin >> s >> t;
// 使用邻接表 ,表示 s -> t 是相连的
graph[s].push_back(t);
}
vector<bool> visited(n + 1, false);
dfs(graph, 1, visited);
//检查是否都访问到了
for (int i = 1; i <= n; i++) {
if (visited[i] == false) {
cout << -1 << endl;
return 0;
}
}
cout << 1 << endl;
}

第二种写法注意有注释的地方是和写法一的区别

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
写法二:dfs处理下一个要访问的节点
#include <iostream>
#include <vector>
#include <list>
using namespace std;

void dfs(const vector<list<int>>& graph, int key, vector<bool>& visited) {
list<int> keys = graph[key];
for (int key : keys) {
if (visited[key] == false) { // 确认下一个是没访问过的节点
visited[key] = true;
dfs(graph, key, visited);
}
}
}

int main() {
int n, m, s, t;
cin >> n >> m;

vector<list<int>> graph(n + 1);
while (m--) {
cin >> s >> t;
graph[s].push_back(t);

}
vector<bool> visited(n + 1, false);

visited[1] = true; // 节点1 预先处理
dfs(graph, 1, visited);

for (int i = 1; i <= n; i++) {
if (visited[i] == false) {
cout << -1 << endl;
return 0;
}
}
cout << 1 << endl;
}

BFS 代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#include <iostream>
#include <vector>
#include <list>
#include <queue>
using namespace std;

int main() {
int n, m, s, t;
cin >> n >> m;

vector<list<int>> graph(n + 1);
while (m--) {
cin >> s >> t;
graph[s].push_back(t);

}
vector<bool> visited(n + 1, false);
visited[1] = true; // 1 号房间开始
queue<int> que;
que.push(1); // 1 号房间开始

// 广度优先搜索的过程
while (!que.empty()) {
int key = que.front(); que.pop();
list<int> keys = graph[key];
for (int key : keys) {
if (!visited[key]) {
que.push(key);
visited[key] = true;
}
}
}

for (int i = 1; i <= n; i++) {
if (visited[i] == false) {
cout << -1 << endl;
return 0;
}
}
cout << 1 << endl;
}

106. 岛屿的周长

题目描述

给定一个由 1(陆地)和 0(水)组成的矩阵,岛屿是被水包围,并且通过水平方向或垂直方向上相邻的陆地连接而成的。

你可以假设矩阵外均被水包围。在矩阵中恰好拥有一个岛屿,假设组成岛屿的陆地边长都为 1,请计算岛屿的周长。岛屿内部没有水域。

输入描述

第一行包含两个整数 N, M,表示矩阵的行数和列数。之后 N 行,每行包含 M 个数字,数字为 1 或者 0,表示岛屿的单元格。

输出描述

输出一个整数,表示岛屿的周长。

输入示例
1
2
3
4
5
6
5 5
0 0 0 0 0
0 1 0 1 0
0 1 1 1 0
0 1 1 1 0
0 0 0 0 0
输出示例
1
14
提示信息

img

image-20240927162702331

岛屿的周长为 14。

数据范围:

1 <= M, N <= 50。


思路:

岛屿问题最容易让人想到BFS或者DFS,但本题确实还用不上。

为了避免大家惯性思维,所以给大家安排了这道题目。

解法一:

遍历每一个空格,遇到岛屿则计算其上下左右的空格情况。

如果该陆地上下左右的空格是有水域,则说明是一条边,如图:

img

陆地的右边空格是水域,则说明找到一条边。

如果该陆地上下左右的空格出界了,则说明是一条边,如图:

img

该陆地的下边空格出界了,则说明找到一条边。

C++代码如下:(详细注释)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#include <iostream>
#include <vector>
using namespace std;
int main() {
int n, m;
cin >> n >> m;
vector<vector<int>> grid(n, vector<int>(m, 0));
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cin >> grid[i][j];
}
}
int direction[4][2] = {0, 1, 1, 0, -1, 0, 0, -1};
int result = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grid[i][j] == 1) {
for (int k = 0; k < 4; k++) { // 上下左右四个方向
int x = i + direction[k][0];
int y = j + direction[k][1]; // 计算周边坐标x,y
if (x < 0 // x在边界上
|| x >= grid.size() // x在边界上
|| y < 0 // y在边界上
|| y >= grid[0].size() // y在边界上
|| grid[x][y] == 0) { // x,y位置是水域
result++;
}
}
}
}
}
cout << result << endl;

}

解法二:

计算出总的岛屿数量,总的变数为:岛屿数量 * 4

因为有一对相邻两个陆地,边的总数就要减2,如图红线部分,有两个陆地相邻,总边数就要减2

img

那么只需要在计算出相邻岛屿的数量就可以了,相邻岛屿数量为cover

结果$ result = 岛屿数量 4 - cover 2$;

C++代码如下:(详细注释)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#include <iostream>
#include <vector>
using namespace std;
int main() {
int n, m;
cin >> n >> m;
vector<vector<int>> grid(n, vector<int>(m, 0));
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cin >> grid[i][j];
}
}
int sum = 0; // 陆地数量
int cover = 0; // 相邻数量
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grid[i][j] == 1) {
sum++; // 统计总的陆地数量
// 统计上边相邻陆地
if(i - 1 >= 0 && grid[i - 1][j] == 1) cover++;
// 统计左边相邻陆地
if(j - 1 >= 0 && grid[i][j - 1] == 1) cover++;
// 为什么没统计下边和右边? 因为避免重复计算
}
}
}

cout << sum * 4 - cover * 2 << endl;

}

9.24-9.27 深搜广搜
https://bing.7dragonpig.cn/posts/9217952a/
作者
七龙猪
发布于
2024年9月24日
许可协议