7.5-贪心篇完结
本文最后更新于 2024年10月21日 早上
435. 无重叠区间
题意描述:
[!WARNING]
给定一个区间的集合
intervals
,其中intervals[i] = [starti, endi]
。返回 需要移除区间的最小数量,使剩余区间互不重叠 。示例 1:
1
2
3
输入: intervals = [[1,2],[2,3],[3,4],[1,3]]
输出: 1
解释: 移除 [1,3] 后,剩下的区间没有重叠。示例 2:
1
2
3
输入: intervals = [ [1,2], [1,2], [1,2] ]
输出: 2
解释: 你需要移除两个 [1,2] 来使剩下的区间没有重叠。示例 3:
1
2
3
输入: intervals = [ [1,2], [2,3] ]
输出: 0
解释: 你不需要移除任何区间,因为它们已经是无重叠的了。提示:
1 <= intervals.length <= 105
intervals[i].length == 2
-5 * 104 <= starti < endi <= 5 * 104
思路:
[!TIP]
相信很多同学看到这道题目都冥冥之中感觉要排序,但是究竟是按照右边界排序,还是按照左边界排序呢?
其实都可以。主要就是为了让区间尽可能的重叠。
我来按照右边界排序,从左向右记录非交叉区间的个数。最后用区间总数减去非交叉区间的个数就是需要移除的区间个数了。
此时问题就是要求非交叉区间的最大个数。
这里记录非交叉区间的个数还是有技巧的,如图:
区间,1,2,3,4,5,6都按照右边界排好序。
当确定区间 1 和 区间2 重叠后,如何确定是否与 区间3 也重贴呢?
就是取 区间1 和 区间2 右边界的最小值,因为这个最小值之前的部分一定是 区间1 和区间2 的重合部分,如果这个最小值也触达到区间3,那么说明 区间 1,2,3都是重合的。
接下来就是找大于区间1结束位置的区间,是从区间4开始。那有同学问了为什么不从区间5开始?别忘了已经是按照右边界排序的了。
区间4结束之后,再找到区间6,所以一共记录非交叉区间的个数是三个。
总共区间个数为6,减去非交叉区间的个数3。移除区间的最小数量就是3。
C++代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
class Solution {
public:
// 按照区间右边界排序
static bool cmp (const vector<int>& a, const vector<int>& b) {
return a[1] < b[1];
}
int eraseOverlapIntervals(vector<vector<int>>& intervals) {
if (intervals.size() == 0) return 0;
sort(intervals.begin(), intervals.end(), cmp);
int count = 1; // 记录非交叉区间的个数
int end = intervals[0][1]; // 记录区间分割点
for (int i = 1; i < intervals.size(); i++) {
if (end <= intervals[i][0]) {
end = intervals[i][1];
count++;
}
}
return intervals.size() - count;
}
};
- 时间复杂度:O(nlog n) ,有一个快排
- 空间复杂度:O(n),有一个快排,最差情况(倒序)时,需要n次递归调用。因此确实需要O(n)的栈空间
大家此时会发现如此复杂的一个问题,代码实现却这么简单!
补充
补充(1)
左边界排序可不可以呢?
也是可以的,只不过左边界排序我们就是直接求重叠的区间,
count
为记录重叠区间数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
class Solution {
public:
static bool cmp (const vector<int>& a, const vector<int>& b) {
return a[0] < b[0]; // 改为左边界排序
}
int eraseOverlapIntervals(vector<vector<int>>& intervals) {
if (intervals.size() == 0) return 0;
sort(intervals.begin(), intervals.end(), cmp);
int count = 0; // 注意这里从0开始,因为是记录重叠区间
int end = intervals[0][1]; // 记录区间分割点
for (int i = 1; i < intervals.size(); i++) {
if (intervals[i][0] >= end) end = intervals[i][1]; // 无重叠的情况
else { // 重叠情况
end = min(end, intervals[i][1]);
count++;
}
}
return count;
}
};其实代码还可以精简一下, 用
intervals[ i ] [ 1 ]
替代end
变量,只判断 重叠情况就好
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Solution {
public:
static bool cmp (const vector<int>& a, const vector<int>& b) {
return a[0] < b[0]; // 改为左边界排序
}
int eraseOverlapIntervals(vector<vector<int>>& intervals) {
if (intervals.size() == 0) return 0;
sort(intervals.begin(), intervals.end(), cmp);
int count = 0; // 注意这里从0开始,因为是记录重叠区间
for (int i = 1; i < intervals.size(); i++) {
if (intervals[i][0] < intervals[i - 1][1]) { //重叠情况
intervals[i][1] = min(intervals[i - 1][1], intervals[i][1]);
count++;
}
}
return count;
}
};补充(2)
本题其实和452.用最少数量的箭引爆气球 (opens new window)非常像,弓箭的数量就相当于是非交叉区间的数量,只要把弓箭那道题目代码里射爆气球的判断条件加个等号(认为 [0 , 1] [ 1 , 2 ]不是相邻区间),然后用总区间数减去弓箭数量 就是要移除的区间数量了。
把452.用最少数量的箭引爆气球 (opens new window)代码稍做修改,就可以AC本题。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution {
public:
// 按照区间右边界排序
static bool cmp (const vector<int>& a, const vector<int>& b) {
return a[1] < b[1]; // 右边界排序
}
int eraseOverlapIntervals(vector<vector<int>>& intervals) {
if (intervals.size() == 0) return 0;
sort(intervals.begin(), intervals.end(), cmp);
int result = 1; // points 不为空至少需要一支箭
for (int i = 1; i < intervals.size(); i++) {
if (intervals[i][0] >= intervals[i - 1][1]) {
result++; // 需要一支箭
}
else { // 气球i和气球i-1挨着
intervals[i][1] = min(intervals[i - 1][1], intervals[i][1]); // 更新重叠气球最小右边界
}
}
return intervals.size() - result;
}
};这里按照 左边界排序,或者按照右边界排序,都可以AC,原理是一样的。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution {
public:
// 按照区间左边界排序
static bool cmp (const vector<int>& a, const vector<int>& b) {
return a[0] < b[0]; // 左边界排序
}
int eraseOverlapIntervals(vector<vector<int>>& intervals) {
if (intervals.size() == 0) return 0;
sort(intervals.begin(), intervals.end(), cmp);
int result = 1; // points 不为空至少需要一支箭
for (int i = 1; i < intervals.size(); i++) {
if (intervals[i][0] >= intervals[i - 1][1]) {
result++; // 需要一支箭
}
else { // 气球i和气球i-1挨着
intervals[i][1] = min(intervals[i - 1][1], intervals[i][1]); // 更新重叠气球最小右边界
}
}
return intervals.size() - result;
}
};
763.划分字母区间
题意描述:
[!WARNING]
给你一个字符串
s
。我们要把这个字符串划分为尽可能多的片段,同一字母最多出现在一个片段中。注意,划分结果需要满足:将所有划分结果按顺序连接,得到的字符串仍然是
s
。返回一个表示每个字符串片段的长度的列表。
示例 1:
1
2
3
4
5
6
输入:s = "ababcbacadefegdehijhklij"
输出:[9,7,8]
解释:
划分结果为 "ababcbaca"、"defegde"、"hijhklij" 。
每个字母最多出现在一个片段中。
像 "ababcbacadefegde", "hijhklij" 这样的划分是错误的,因为划分的片段数较少。示例 2:
1
2
输入:s = "eccbbbbdec"
输出:[10]提示:
1 <= s.length <= 500
s
仅由小写英文字母组成
思路:
[!TIP]
一想到分割字符串就想到了回溯,但本题其实不用回溯去暴力搜索。
题目要求同一字母最多出现在一个片段中,那么如何把同一个字母的都圈在同一个区间里呢?
如果没有接触过这种题目的话,还挺有难度的。
在遍历的过程中相当于是要找每一个字母的边界,如果找到之前遍历过的所有字母的最远边界,说明这个边界就是分割点了。此时前面出现过所有字母,最远也就到这个边界了。
可以分为如下两步:
- 统计每一个字符最后出现的位置
- 从头遍历字符,并更新字符的最远出现下标,如果找到字符最远出现位置下标和当前下标相等了,则找到了分割点
如图:
明白原理之后,代码并不复杂,如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
class Solution {
public:
vector<int> partitionLabels(string S) {
int hash[27] = {0}; // i为字符,hash[i]为字符出现的最后位置
for (int i = 0; i < S.size(); i++) { // 统计每一个字符最后出现的位置
hash[S[i] - 'a'] = i;
}
vector<int> result;
int left = 0;
int right = 0;
for (int i = 0; i < S.size(); i++) {
right = max(right, hash[S[i] - 'a']); // 找到字符出现的最远边界
if (i == right) {
result.push_back(right - left + 1);
left = i + 1;
}
}
return result;
}
};
- 时间复杂度:O(n)
- 空间复杂度:O(1),使用的hash数组是固定大小
总结
这道题目leetcode标记为贪心算法,说实话,我没有感受到贪心,找不出局部最优推出全局最优的过程。就是用最远出现距离模拟了圈字符的行为。
但这道题目的思路是很巧妙的,所以有必要介绍给大家做一做,感受一下。
补充
这里提供一种与452.用最少数量的箭引爆气球 (opens new window)、435.无重叠区间 (opens new window)相同的思路。
统计字符串中所有字符的起始和结束位置,记录这些区间(实际上也就是435.无重叠区间 (opens new window)题目里的输入),将区间按左边界从小到大排序,找到边界将区间划分成组,互不重叠。找到的边界就是答案。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
class Solution {
public:
static bool cmp(vector<int> &a, vector<int> &b) {
return a[0] < b[0];
}
// 记录每个字母出现的区间
vector<vector<int>> countLabels(string s) {
vector<vector<int>> hash(26, vector<int>(2, INT_MIN));
vector<vector<int>> hash_filter;
for (int i = 0; i < s.size(); ++i) {
if (hash[s[i] - 'a'][0] == INT_MIN) {
hash[s[i] - 'a'][0] = i;
}
hash[s[i] - 'a'][1] = i;
}
// 去除字符串中未出现的字母所占用区间
for (int i = 0; i < hash.size(); ++i) {
if (hash[i][0] != INT_MIN) {
hash_filter.push_back(hash[i]);
}
}
return hash_filter;
}
vector<int> partitionLabels(string s) {
vector<int> res;
// 这一步得到的 hash 即为无重叠区间题意中的输入样例格式:区间列表
// 只不过现在我们要求的是区间分割点
vector<vector<int>> hash = countLabels(s);
// 按照左边界从小到大排序
sort(hash.begin(), hash.end(), cmp);
// 记录最大右边界
int rightBoard = hash[0][1];
int leftBoard = 0;
for (int i = 1; i < hash.size(); ++i) {
// 由于字符串一定能分割,因此,
// 一旦下一区间左边界大于当前右边界,即可认为出现分割点
if (hash[i][0] > rightBoard) {
res.push_back(rightBoard - leftBoard + 1);
leftBoard = hash[i][0];
}
rightBoard = max(rightBoard, hash[i][1]);
}
// 最右端
res.push_back(rightBoard - leftBoard + 1);
return res;
}
};
56. 合并区间
题意描述:
[!WARNING]
以数组
intervals
表示若干个区间的集合,其中单个区间为intervals[i] = [starti, endi]
。请你合并所有重叠的区间,并返回 一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间 。示例 1:
1
2
3
输入:intervals = [[1,3],[2,6],[8,10],[15,18]]
输出:[[1,6],[8,10],[15,18]]
解释:区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6].示例 2:
1
2
3
输入:intervals = [[1,4],[4,5]]
输出:[[1,5]]
解释:区间 [1,4] 和 [4,5] 可被视为重叠区间。提示:
1 <= intervals.length <= 104
intervals[i].length == 2
0 <= starti <= endi <= 104
思路:
[!TIP]
本题的本质其实还是判断重叠区间问题。
大家如果认真做题的话,话发现和我们刚刚讲过的452. 用最少数量的箭引爆气球 (opens new window)和 435. 无重叠区间 (opens new window)都是一个套路。
这几道题都是判断区间重叠,区别就是判断区间重叠后的逻辑,本题是判断区间重贴后要进行区间合并。
所以一样的套路,先排序,让所有的相邻区间尽可能的重叠在一起,按左边界,或者右边界排序都可以,处理逻辑稍有不同。
按照左边界从小到大排序之后,如果
intervals[i][0] <= intervals[i - 1][1]
即intervals[i]的左边界 <= intervals[i - 1]的右边界,则一定有重叠。(本题相邻区间也算重贴,所以是<=)这么说有点抽象,看图:(注意图中区间都是按照左边界排序之后了)
知道如何判断重复之后,剩下的就是合并了,如何去模拟合并区间呢?
其实就是用合并区间后左边界和右边界,作为一个新的区间,加入到result数组里就可以了。如果没有合并就把原区间加入到result数组。
C++代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution {
public:
vector<vector<int>> merge(vector<vector<int>>& intervals) {
vector<vector<int>> result;
if (intervals.size() == 0) return result; // 区间集合为空直接返回
// 排序的参数使用了lambda表达式
sort(intervals.begin(), intervals.end(), [](const vector<int>& a, const vector<int>& b){return a[0] < b[0];});
// 第一个区间就可以放进结果集里,后面如果重叠,在result上直接合并
result.push_back(intervals[0]);
for (int i = 1; i < intervals.size(); i++) {
if (result.back()[1] >= intervals[i][0]) { // 发现重叠区间
// 合并区间,只更新右边界就好,因为result.back()的左边界一定是最小值,因为我们按照左边界排序的
result.back()[1] = max(result.back()[1], intervals[i][1]);
} else {
result.push_back(intervals[i]); // 区间不重叠
}
}
return result;
}
};
- 时间复杂度: O(nlogn)
- 空间复杂度: O(logn),排序需要的空间开销
补充
[!CAUTION]
为什么
cmp
函数在作为类成员函数的时候一定需要static
修饰呢?这是因为所有我们在类内定义的非static
成员函数在经过编译后隐式的为他们添加了一个this指针参数!变为了:
1
bool cmp(Solution *this, int a, int b)
而标准库的
sort()
函数的第三个cmp
函数指针参数中并没有这样this
指针参数,因此会出现输入的cmp
参数和sort()
要求的参数不匹配,从而导致了:
1
error: reference to non-static member function must be called
而我们知道
static
静态类成员函数是不需要this
指针的,因此改为静态成员函数即可通过!写
cmp
函数时的格式:
1
2
3
static bool cmp(const vector<int>& a , const vector<int>& b){
return a[0] < b[0];
}
738.单调递增的数字
题意描述:
[!WARNING]
当且仅当每个相邻位数上的数字
x
和y
满足x <= y
时,我们称这个整数是单调递增的。给定一个整数
n
,返回 小于或等于n
的最大数字,且数字呈 单调递增 。示例 1:
1
2
输入: n = 10
输出: 9示例 2:
1
2
输入: n = 1234
输出: 1234示例 3:
1
2
输入: n = 332
输出: 299提示:
- 0 <= n <= 10^9^
思路:
[!TIP]
暴力解法
题意很简单,那么首先想的就是暴力解法了,来我替大家暴力一波,结果自然是超时!
代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution {
private:
// 判断一个数字的各位上是否是递增
bool checkNum(int num) {
int max = 10;
while (num) {
//t为最后一位
int t = num % 10;
if (max >= t) max = t;
else return false;
num = num / 10;
}
return true;
}
public:
int monotoneIncreasingDigits(int N) {
for (int i = N; i > 0; i--) { // 从大到小遍历
if (checkNum(i)) return i;
}
return 0;
}
};
- 时间复杂度:O(n × m) m为n的数字长度
- 空间复杂度:O(1)
贪心算法
题目要求小于等于N的最大单调递增的整数,那么拿一个两位的数字来举例。
例如:98,一旦出现
strNum[i - 1] > strNum[i]
的情况(非单调递增),首先想让strNum[i - 1]--,然后strNum[i]
给为9,这样这个整数就是89,即小于98的最大的单调递增整数。这一点如果想清楚了,这道题就好办了。
此时是从前向后遍历还是从后向前遍历呢?
从前向后遍历的话,遇到
strNum[i - 1] > strNum[i]
的情况,让strNum[i - 1]
减一,但此时如果strNum[i - 1]
减一了,可能又小于strNum[i - 2]
。这么说有点抽象,举个例子,数字:332,从前向后遍历的话,那么就把变成了329,此时2又小于了第一位的3了,真正的结果应该是299。
那么从后向前遍历,就可以重复利用上次比较得出的结果了,从后向前遍历332的数值变化为:332 -> 329 -> 299
确定了遍历顺序之后,那么此时局部最优就可以推出全局,找不出反例,试试贪心。
C++代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class Solution {
public:
int monotoneIncreasingDigits(int N) {
string strNum = to_string(N);
// flag用来标记赋值9从哪里开始,因为9后面的必定都是9
// 设置为这个默认值,为了防止第二个for循环在flag没有被赋值的情况下执行
int flag = strNum.size();
for (int i = strNum.size() - 1; i > 0; i--) {
if (strNum[i - 1] > strNum[i] ) {
flag = i;
strNum[i - 1]--;
}
}
for (int i = flag; i < strNum.size(); i++) {
strNum[i] = '9';
}
return stoi(strNum);
}
};
- 时间复杂度:O(n),n 为数字长度
- 空间复杂度:O(n),需要一个字符串,转化为字符串操作更方便
总结
本题只要想清楚个例,例如98,一旦出现
strNum[i - 1] > strNum[i]
的情况(非单调递增),首先想让strNum[i - 1]
减一,strNum[i]
赋值9,这样这个整数就是89。就可以很自然想到对应的贪心解法了。想到了贪心,还要考虑遍历顺序,只有从后向前遍历才能重复利用上次比较的结果。
最后代码实现的时候,也需要一些技巧,例如用一个
flag
来标记从哪里开始赋值9。补充
stoi()
,to_string
这两个函数都是对字符串处理的函数,**前者是将字符串转化为十进制 int 类型,最后一个是将十进制类型 int、double 等转化为string。
头文件都是:#include
968.监控二叉树
题意描述:
[!CAUTION]
给定一个二叉树,我们在树的节点上安装摄像头。
节点上的每个摄影头都可以监视其父对象、自身及其直接子对象。
计算监控树的所有节点所需的最小摄像头数量。
示例 1:
1
2
3
输入:[0,0,null,0,0]
输出:1
解释:如图所示,一台摄像头足以监控所有节点。示例 2:
1
2
3
输入:[0,0,null,0,null,0,null,null,0]
输出:2
解释:需要至少两个摄像头来监视树的所有节点。 上图显示了摄像头放置的有效位置之一。提示:
- 给定树的节点数的范围是
[1, 1000]
。- 每个节点的值都是 0。
思路:
[!TIP]
这道题目首先要想,如何放置,才能让摄像头最小的呢?
从题目中示例,其实可以得到启发,我们发现题目示例中的摄像头都没有放在叶子节点上!
这是很重要的一个线索,摄像头可以覆盖上中下三层,如果把摄像头放在叶子节点上,就浪费的一层的覆盖。
所以把摄像头放在叶子节点的父节点位置,才能充分利用摄像头的覆盖面积。
那么有同学可能问了,为什么不从头结点开始看起呢,为啥要从叶子节点看呢?
因为头结点放不放摄像头也就省下一个摄像头, 叶子节点放不放摄像头省下了的摄像头数量是指数阶别的。
所以我们要从下往上看,局部最优:让叶子节点的父节点安摄像头,所用摄像头最少,整体最优:全部摄像头数量所用最少!
局部最优推出全局最优,找不出反例,那么就按照贪心来!
此时,大体思路就是从低到上,先给叶子节点父节点放个摄像头,然后隔两个节点放一个摄像头,直至到二叉树头结点。
此时这道题目还有两个难点:
- 二叉树的遍历
- 如何隔两个节点放一个摄像头
确定遍历顺序确定遍历顺序
在二叉树中如何从低向上推导呢?
可以使用
后序遍历
也就是左右中的顺序,这样就可以在回溯的过程中从下到上进行推导了。后序遍历代码如下:
1
2
3
4
5
6
7
8
9
10
11
int traversal(TreeNode* cur) {
// 空节点,该节点有覆盖
if (终止条件) return ;
int left = traversal(cur->left); // 左
int right = traversal(cur->right); // 右
逻辑处理 // 中
return ;
}注意在以上代码中我们取了左孩子的返回值,右孩子的返回值,即
left
和right
, 以后推导中间节点的状态如何隔两个节点放一个摄像头
此时需要状态转移的公式,大家不要和动态的状态转移公式混到一起,本题状态转移没有择优的过程,就是单纯的状态转移!
来看看这个状态应该如何转移,先来看看每个节点可能有几种状态:
有如下三种:
- 该节点无覆盖
- 本节点有摄像头
- 本节点有覆盖
我们分别有三个数字来表示:
- 0:该节点无覆盖
- 1:本节点有摄像头
- 2:本节点有覆盖
大家应该找不出第四个节点的状态了。
一些同学可能会想有没有第四种状态:本节点无摄像头,其实无摄像头就是 无覆盖 或者 有覆盖的状态,所以一共还是三个状态。
因为在遍历树的过程中,就会遇到空节点,那么问题来了,空节点究竟是哪一种状态呢? 空节点表示无覆盖? 表示有摄像头?还是有覆盖呢?
回归本质,为了让摄像头数量最少,我们要尽量让
叶子节点的父节点
安装摄像头,这样才能摄像头的数量最少。那么空节点不能是无覆盖的状态,这样叶子节点就要放摄像头了,空节点也不能是有摄像头的状态,这样叶子节点的父节点就没有必要放摄像头了,而是可以把摄像头放在叶子节点的爷爷节点上。
所以空节点的状态只能是有覆盖,这样就可以在叶子节点的父节点放摄像头了
接下来就是递推关系。
那么递归的终止条件应该是
遇到了空节点
,此时应该返回2(有覆盖),原因上面已经解释过了。代码如下:
1
2
// 空节点,该节点有覆盖
if (cur == NULL) return 2;递归的函数,以及终止条件已经确定了,再来看单层逻辑处理。
主要有如下四类情况:
- 情况1:左右节点都有覆盖
左孩子有覆盖,右孩子有覆盖,那么此时中间节点应该就是无覆盖的状态了。
如图:
代码如下:
1
2
// 左右节点都有覆盖
if (left == 2 && right == 2) return 0;
- 情况2:左右节点至少有一个无覆盖的情况
如果是以下情况,则中间节点(父节点)应该放摄像头:
- left == 0 && right == 0 左右节点无覆盖
- left == 1 && right == 0 左节点有摄像头,右节点无覆盖
- left == 0 && right == 1 左节点有无覆盖,右节点摄像头
- left == 0 && right == 2 左节点无覆盖,右节点覆盖
- left == 2 && right == 0 左节点覆盖,右节点无覆盖
这个不难理解,毕竟有一个孩子没有覆盖,父节点就应该放摄像头。
此时摄像头的数量要加一,并且return 1,代表中间节点放摄像头。
代码如下:
1
2
3
4
if (left == 0 || right == 0) {
result++;
return 1;
}
- 情况3:左右节点至少有一个有摄像头
如果是以下情况,其实就是 左右孩子节点有一个有摄像头了,那么其父节点就应该是2(覆盖的状态)
- left == 1 && right == 2 左节点有摄像头,右节点有覆盖
- left == 2 && right == 1 左节点有覆盖,右节点有摄像头
- left == 1 && right == 1 左右节点都有摄像头
代码如下:
1
if (left == 1 || right == 1) return 2;
从这个代码中,可以看出,如果left == 1, right == 0 怎么办?其实这种条件在情况2中已经判断过了,如图:
这种情况也是大多数同学容易迷惑的情况。
- 情况4:头结点没有覆盖
以上都处理完了,递归结束之后,可能头结点 还有一个无覆盖的情况,如图:
所以递归结束之后,还要判断根节点,如果没有覆盖,result++,代码如下:
1
2
3
4
5
6
7
int minCameraCover(TreeNode* root) {
result = 0;
if (traversal(root) == 0) { // root 无覆盖
result++;
}
return result;
}以上四种情况我们分析完了,代码也差不多了,整体代码如下:
(以下我的代码注释很详细,为了把情况说清楚,特别把每种情况列出来。)
C++代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
// 版本一
class Solution {
private:
int result;
int traversal(TreeNode* cur) {
// 空节点,该节点有覆盖
if (cur == NULL) return 2;
int left = traversal(cur->left); // 左
int right = traversal(cur->right); // 右
// 情况1
// 左右节点都有覆盖
if (left == 2 && right == 2) return 0;
// 情况2
// left == 0 && right == 0 左右节点无覆盖
// left == 1 && right == 0 左节点有摄像头,右节点无覆盖
// left == 0 && right == 1 左节点有无覆盖,右节点摄像头
// left == 0 && right == 2 左节点无覆盖,右节点覆盖
// left == 2 && right == 0 左节点覆盖,右节点无覆盖
if (left == 0 || right == 0) {
result++;
return 1;
}
// 情况3
// left == 1 && right == 2 左节点有摄像头,右节点有覆盖
// left == 2 && right == 1 左节点有覆盖,右节点有摄像头
// left == 1 && right == 1 左右节点都有摄像头
// 其他情况前段代码均已覆盖
if (left == 1 || right == 1) return 2;
// 以上代码我没有使用else,主要是为了把各个分支条件展现出来,这样代码有助于读者理解
// 这个 return -1 逻辑不会走到这里。
return -1;
}
public:
int minCameraCover(TreeNode* root) {
result = 0;
// 情况4
if (traversal(root) == 0) { // root 无覆盖
result++;
}
return result;
}
};在以上代码的基础上,再进行精简,代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
// 版本二
class Solution {
private:
int result;
int traversal(TreeNode* cur) {
if (cur == NULL) return 2;
int left = traversal(cur->left); // 左
int right = traversal(cur->right); // 右
if (left == 2 && right == 2) return 0;
else if (left == 0 || right == 0) {
result++;
return 1;
} else return 2;
}
public:
int minCameraCover(TreeNode* root) {
result = 0;
if (traversal(root) == 0) { // root 无覆盖
result++;
}
return result;
}
};
- 时间复杂度: O(n),需要遍历二叉树上的每个节点
- 空间复杂度: O(n)
大家可能会惊讶,居然可以这么简短,其实就是在版本一的基础上,使用else把一些情况直接覆盖掉了。
在网上关于这道题解可以搜到很多这种神级别的代码,但都没讲不清楚,如果直接看代码的话,指定越看越晕,所以建议大家对着版本一的代码一步一步来,版本二中看不中用!。
总结
本题的难点首先是要想到贪心的思路,然后就是遍历和状态推导。
在二叉树上进行状态推导,其实难度就上了一个台阶了,需要对二叉树的操作非常娴熟。
这道题目是名副其实的
hard
,大家感受感受。
总结:
贪心理论基础
在贪心系列开篇词关于贪心算法,你该了解这些! (opens new window)中,我们就讲解了大家对贪心的普遍疑惑。
- 贪心很简单,就是常识?
跟着一起刷题的录友们就会发现,贪心思路往往很巧妙,并不简单。
- 贪心有没有固定的套路?
贪心无套路,也没有框架之类的,需要多看多练培养感觉才能想到贪心的思路。
- 究竟什么题目是贪心呢?
Carl个人认为:如果找出局部最优并可以推出全局最优,就是贪心,如果局部最优都没找出来,就不是贪心,可能是单纯的模拟。(并不是权威解读,一家之辞哈)
但我们也不用过于强调什么题目是贪心,什么不是贪心,那就太学术了,毕竟学会解题就行了。
- 如何知道局部最优推出全局最优,有数学证明么?
在做贪心题的过程中,如果再来一个数据证明,其实没有必要,手动模拟一下,如果找不出反例,就试试贪心。面试中,代码写出来跑过测试用例即可,或者自己能自圆其说理由就行了
就像是 要用一下 1 + 1 = 2,没有必要再证明一下 1 + 1 究竟为什么等于 2。(例子极端了点,但是这个道理)
贪心简单题
以下三道题目就是简单题,大家会发现贪心感觉就是常识。是的,如下三道题目,就是靠常识,但我都具体分析了局部最优是什么,全局最优是什么,贪心也要贪的有理有据!
贪心中等题
贪心中等题,靠常识可能就有点想不出来了。开始初现贪心算法的难度与巧妙之处。
贪心解决股票问题
大家都知道股票系列问题是动规的专长,其实用贪心也可以解决,而且还不止就这两道题目,但这两道比较典型,我就拿来单独说一说
- 贪心算法:买卖股票的最佳时机II(opens new window)
- 贪心算法:买卖股票的最佳时机含手续费 (opens new window)本题使用贪心算法比较绕,建议后面学习动态规划章节的时候,理解动规就好
两个维度权衡问题
在出现两个维度相互影响的情况时,两边一起考虑一定会顾此失彼,要先确定一个维度,再确定另一个一个维度。
在讲解本题的过程中,还强调了编程语言的重要性,模拟插队的时候,使用C++
中的list
(链表)替代了vector
(动态数组),效率会高很多。
所以在贪心算法:根据身高重建队列(续集) (opens new window)详细讲解了,为什么用list
(链表)更快!
大家也要掌握自己所用的编程语言,理解其内部实现机制,这样才能写出高效的算法!
贪心难题
这里的题目如果没有接触过,其实是很难想到的,甚至接触过,也一时想不出来,所以题目不要做一遍,要多练!
贪心解决区间问题
关于区间问题,大家应该印象深刻,有一周我们专门讲解的区间问题,各种覆盖各种去重。
- 贪心算法:跳跃游戏(opens new window)
- 贪心算法:跳跃游戏II(opens new window)
- 贪心算法:用最少数量的箭引爆气球(opens new window)
- 贪心算法:无重叠区间(opens new window)
- 贪心算法:划分字母区间(opens new window)
- 贪心算法:合并区间(opens new window)
其他难题
贪心算法:最大子序和 (opens new window)其实是动态规划的题目,但贪心性能更优,很多同学也是第一次发现贪心能比动规更优的题目。
贪心算法:加油站 (opens new window)可能以为是一道模拟题,但就算模拟其实也不简单,需要把while
用的很娴熟。但其实是可以使用贪心给时间复杂度降低一个数量级。
最后贪心系列压轴题目贪心算法:我要监控二叉树! (opens new window),不仅贪心的思路不好想,而且需要对二叉树的操作特别娴熟,这就是典型的交叉类难题了。